Interdisciplinary sport research can better predict competition performance, identify individual differences, and quantify task representation

Abstract

Sport performance consists of interacting individual, task and environmental constraints, but research has used a monodisciplinary, rather than an interdisciplinary approach to understand performance. This study used Australian football (AF) as the exemplar sport to investigate the value of an interdisciplinary approach to understand sport performance. Through this, it was also possible to quantify individual differences and representative task design. Fifty-nine semi-professional Australian footballers participated. Based upon accessibility, combinations of these players completed physiological (3 × 1km trial) and perceptual-cognitive-motor (small-sided game, SSG) tests, with coach rating of psychological skill (mental toughness coach, MTC). Univariate monodisciplinary models indicated that all tests predicted disposal efficiency; 3 × 1km trial (p = 0.047), SSG (p = 0.001), and MTC (p = 0.035), but only the SSG predicted coaches’ vote (p = 0.003). A multivariate interdisciplinary model indicated that SSG and MTC tests predicted disposal efficiency with a better model fit than the corresponding univariate model. The interdisciplinary model formulated an equation that could identify individual differences in disposal efficiency. In addition, the interdisciplinary model showed that the higher representative SSG test contributed a greater magnitude to the prediction of competition performance, than the lower representative MTC rating. Overall, this study demonstrates that a more comprehensive understanding of sport performance, individual differences, and representative tasks, can be obtained through an interdisciplinary approach.

Keywords

interdisciplinary research, individual differences, representative task design, sports science, Australian football

Link to Publisher Version (URL)

10.3389/fspor.2020.00014

This document is currently not available here.

Find in your library

Share

COinS