Article Title

Role of a LIF antagonist in LIF and OSM induced MMP-1, MMP-3, and TIMP-1 expression by primary articular chondrocytes


Cartilage degradation is mediated by matrix metalloproteinases (MMPs) and their inhibitors, tissue metalloproteinases (TIMPs), which are transcriptionally regulated by a variety of growth factors and cytokines. The levels of various MMPs as well as TIMPs have been shown to increase in response to certain cytokines. These include leukaemia inhibitory factor (LIF) and Oncostatin M (OSM), both of which have been detected in the synovial fluids of patients with rheumatoid arthritis (RA). However, the role of LIF and OSM in the regulation of various MMPs and TIMPs is still incompletely understood. The aims of this study were to examine the effects of LIF and OSM on MMP-1, MMP-3, and TIMP-1 production. In addition, the capacity of the LIF antagonist, MH35-BD, to block LIF and OSM induced MMP expression was examined. Primary chondrocytes, isolated from porcine metacarpophalangeal cartilage, were cultured in the presence and absence of LIF and OSM, with and without a predetermined concentration of the LIF antagonist. We analysed the levels of MMP-1, MMP-3 and TIMP-1 expression using qRT-PCR, Northern blot, and ELISA assays. The results indicate that LIF and OSM increase the expression of MMP-1, MMP-3, and TIMP-1 several fold. Furthermore their expression is reduced to basal levels in the presence of the LIF antagonist MH35-BD.


peer-reviewed, oncostatin M (OSM), leukemia inhibitory factor (LIF), cartilage, matrix metalloproteinases (MMPs)

Find in your library



Link to Publisher Version (DOI)