2015

Relationship between serum testosterone and fracture risk in men: a comparison of RIA and LC-MS/MS

Thach S. Tran
Jacqueline R. Center
Markus J. Seibel
John A. Eisman

University of Notre Dame Australia, john.eisman@nd.edu.au

Mark M. Kushnir

See next page for additional authors

Follow this and additional works at: https://researchonline.nd.edu.au/med_article

Part of the Medicine and Health Sciences Commons

This article was originally published as:

Original article available here:
http://www.clinchem.org/content/61/9/1182

This article is posted on ResearchOnline@ND at
https://researchonline.nd.edu.au/med_article/704. For more information, please contact researchonline@nd.edu.au.
Relationship between Serum Testosterone and Fracture Risk in Men: A Comparison of RIA and LC-MS/MS

Thach S. Tran,1 Jacqueline R. Center,1,2 Markus J. Seibel,3 John A. Eisman,1,2,4,5 Mark M. Kushnir,6 Alan L. Rockwood,6 and Tuan V. Nguyen1,7,8*

BACKGROUND: Serum testosterone can be measured by LC-MS/MS and RIA. We investigated whether the testosterone–fracture relationship was affected by the method of measurement.

METHODS: We measured total testosterone (TT) by LC-MS/MS (TTLC-MS/MS) and RIA (TTRIA) in serum samples collected from 602 men whose incident fractures had been continuously ascertained by x-ray reports from 1989 to 2010. We measured bone mineral density (BMD) by dual-energy x-ray absorptiometry. The association between TT and fracture risk was assessed by the Cox proportional hazards model, taking into account the effect of age and BMD.

RESULTS: Mean TTLC-MS/MS was higher than TTRIA by 27 ng/dL (95% CI 13–41). The concordance correlation coefficient between TT LC-MS/MS and TTRIA was 0.72 (95% CI 0.68 – 0.76). The Deming regression equation linking the 2 measurements was ln(TTLC-MS/MS + 10) = 0.87 + 0.87 × ln(TTRIA + 10). The hazard ratio of fracture per SD decrease in TT was 1.32 (95% CI 1.12–1.54) for TTLC-MS/MS and 1.23 (1.06–1.43) for TTRIA. The correlation between predicted probabilities of fracture by TTLC-MS/MS and TTRIA was r = 0.96, with the mean difference being 0.01% (95% CI −6.1% to 6.2%). Slightly more patients were classified as having hypogonadism if TTRIA was used (29% vs 26%).

CONCLUSIONS: The concordance between LC-MS/MS and RIA in the measurement of serum TT was moderate. Moreover, the magnitude of association between testosterone and fracture risk in older men was largely unaffected by the method of measurement.

© 2015 American Association for Clinical Chemistry

Measurement of testosterone is commonly used in the diagnosis of androgen deficiency and epidemiologic studies of association. It has been recommended that a serum total testosterone (TT) concentration <300 ng/dL (equivalent to 10.4 nmol/L) is considered hypogonadal (1). Recent epidemiologic studies have suggested that hypogonadal concentrations of TT are associated with an increased risk of fragility fracture (2, 3). In older men from the Dubbo Study, after adjustment for major risk factors, the risk of fracture was increased by 37% for every 199 ng/dL (6.9 nmol/L) decrease in TT concentrations (3).

Serum testosterone can be measured by LC-MS/MS and by immunoassay, including RIA, chemiluminescent immunoassay, and enzyme-linked immunosorbent assay. Because of its lower cost and higher throughput, RIA has been widely used in research and routine clinical practice. However, the imprecision and accuracy of direct RIAs are usually suboptimal, in particular for measurements of low concentrations, which are clinically relevant (i.e., in women, children, and hypogonadal men) (4). The correlation between RIA and LC-MS/MS for measuring testosterone concentrations is high, with the coefficient of correlation being >0.9 (4–8). However, discordance between commercial immunoassays and mass spectrometry has been reported to be ≤5-fold at TT concentrations of ≤230 ng/dL (7). Correlation is a population-level measure, not necessarily applicable to an individual. Thus it is not clear whether such a high
correlation could translate into an accurate classification of hypogonadism for an individual.

From an epidemiologic point of view, measurements of TT by RIA methods are preferable given their relatively lower cost and faster throughput. Nevertheless, no data directly compare the ability of TT concentration to predict future fracture risk as measured by RIA vs LC-MS/MS. This study was designed to determine whether the fracture–testosterone relationship was affected by the method of measurement at the population and individual levels.

Materials and Methods

SETTING AND PARTICIPANTS

The study was part of the ongoing Dubbo Osteoporosis Epidemiology Study, for which study design and protocols have been described in detail previously (3). Briefly, through the electoral roll and via media campaign, all men and women ≥60 years old as of June 30, 1989, living in Dubbo (a regional city of 32000 predominantly white people in New South Wales, Australia) were invited to participate in the study. The age and sex distribution of the Dubbo population closely resembled that of the general Australian population. The study was approved by St Vincent’s Hospital Ethics Review Committee, Sydney. Written informed consent was obtained from all participants.

DATA COLLECTION

A nurse coordinator interviewed participants by administering a structured questionnaire to obtain anthropometric variables and other data including age, history of fracture after 50 years of age, history of falls in the preceding 12 months, lifestyle factors, and calcium intake. Bone mineral density (BMD) was measured at the lumbar spine and femoral neck by dual-energy x-ray absorptiometry (Lunar DPX-L; GE-Lunar). The same densitometer was used throughout the study, and the CV for the BMD measurements was 1.3% and 5.3% at the lumbar spine and femoral neck, respectively.

Incident fractures were continuously ascertained from 1989 to 2010 by review of x-ray reports from all 3 radiological services for the entire Dubbo area. A study coordinator determined the circumstances surrounding each fracture by phone call after each fracture. The analysis included only low-trauma and nonpathologic fractures with a definite report of fracture. Fractures were excluded from the analysis if they had clearly resulted from major trauma (motor vehicle accidents) or underlying diseases (cancer or Paget disease) or were fractures of digits, skull, or cervical spine.

LABORATORY MEASUREMENTS

We measured TT concentrations by LC-MS/MS (TTLC-MS/MS) and RIA (TTRIA) in 602 (69.4%) of the 868 men who had been participating by July 2004 and were followed up at biennial intervals. Men with and without a serum sample (n = 259) were comparable with regard to baseline characteristics, such as age, weight, height, and BMD.

Most participants had nonfasting blood samples collected in the morning in plain tubes, which were centrifuged at 14000g. Serum samples were removed and stored in 2-mL Eppendorf tubes at −80°C until analysis. Serum TT concentrations were measured by LC-MS/MS (9) at ARUP Laboratories. The same samples were also measured by a commercial RIA (Delfia; PerkinElmer, Wallac Oy) at the Bone Biology Laboratory, ANZAC Research Institute, Sydney. The limit of quantification and method imprecision for TT were 3.0 ng/dL and <10% (LC-MS/MS) and 8.6 ng/dL and 6.8% (RIA), respectively. Intraassay CVs were 5.6% and 4.5% for LC-MS/MS and RIA, respectively.

Serum concentrations of sex hormone–binding globulin (SHBG) were determined by RIA (Delfia) at the Bone Biology Laboratory, ANZAC Research Institute, Sydney, with CVs of 10.2%, 5.3%, and 8.3% at high (14.6 μg/mL), mid-range (6.4 μg/mL), and low (2.2 μg/mL) concentrations, respectively. Estradiol concentrations were measured by LC-MS/MS (10) at ARUP Laboratories. The limit of quantification for estradiol was 1.5 pg/mL (5.5 pmol/L), and method imprecision was <10%.

STATISTICAL METHODS

We determined the extent of between-method agreement in TT by comparing the measured values of TT obtained by RIA with those obtained by LC-MS/MS as evaluated by Deming regression (11) and Bland–Altman plot (12). We used the κ correlation coefficient (13) to quantify the concordance in clinical diagnosis of male hypogonadism, with a threshold of 300 ng/dL (10.4 nmol/L) (1).

We used the Cox proportional hazards model to assess the association between TT and fracture risk. In this method, the time to fracture was the outcome, and measurements of TT were predictors. Two independent models were considered: (a) fracture as a function of TTRIA and (b) fracture as a function of TTLC-MS/MS. In each model, we assessed the magnitude of association by the hazard ratio and 95% CI per SD decrease in TT concentration. The hazard ratio was further adjusted for known risk factors, such as age, body weight, femoral neck BMD, prior fracture, dietary calcium intake, SHBG concentration, and smoking status. Femoral neck BMD was considered in the model because it was less likely than lumbar spine BMD to be affected by degenerative changes. Because the distributions of testosterone con-
centrations, SHBG, estradiol, and dietary calcium intake were skewed, we applied a natural logarithmic (ln) transformation of observed values with the formula: \(\ln(x + c) \), where \(x \) is the original value and \(c \) is a normalized constant. A correlation of the predicted probability of fracture obtained from the 2 predictive models was determined. All statistical analyses were performed with the R statistical environment on a Windows platform (14).

Results

BETWEEN-METHOD AGREEMENT OF RIA AND LC-MS/MS MEASUREMENTS

We evaluated data from 602 men aged 73 (6) years [mean (SD)] whose serum TT concentrations were measured by both RIA and LC-MS/MS (Table 1). Approximately 66% of men were aged ≥70. TT concentrations were weakly correlated with serum estradiol (Pearson correlation coefficient 0.45 for TTLC-MS/MS and 0.35 for TTRIA) and SHBG (0.35 for TTLC-MS/MS and 0.36 for TTRIA). Serum TTLC-MS/MS and TTRIA were 430 (206) ng/dL [14.9 (7.1) nmol/L] and 403 (196) ng/dL [14 (6.8) nmol/L], respectively. The median (interquartile range) of serum TTLC-MS/MS was 398 (296 to 555) ng/dL [13.8 (10.3–19.2) nmol/L], and of serum TTRIA, 386 (280 to 525) ng/dL [13.4 (9.7–18.2) nmol/L]. Mean TTLC-MS/MS was lower than that of TTLC-MS/MS by 27 ng/dL (95% CI 13–41, \(P \) (paired \(t \)-test) = 0.0002). The concordance correlation coefficient between the 2 methods of measurement was 0.72 (95% CI 0.68–0.76). There was no evidence that the between-method difference was systematically related to the means (Fig. 1). The Deming regression equation describing the relationship between TT concentration measured by LC-MS/MS and RIA was \(\ln(TTLC-MS/MS) = 0.87 \ln(TTRIA) + 0.87 \times \ln(TTLC-MS/MS + 10) \). This equation suggested that the RIA method overestimated TT concentrations by 13% compared with the LC-MS/MS method (\(R^2 = 0.54 \)). Free testosterone concentrations were estimated from TT and SHBG concentrations with the empirical algorithm proposed by Sartorius et al. (15). Free testosterone calculated from TTRIA was lower than that calculated from TTLC-MS/MS by 0.35 ng/dL [95% CI 0.17–0.53, \(P \) (paired \(t \)-test) = 0.0002].

DIAGNOSTIC CONCORDANCE AT THE INDIVIDUAL LEVEL

With the criterion of TT ≤300 ng/dL (10.4 nmol/L), 156 men (26%) were classified as testosterone deficient by LC-MS/MS (Table 2). With the same criterion, the prevalence of testosterone deficiency was 29% (n = 176) by RIA. However, the concordance in the diagnosis between 2 methods of measurement was modest, with a \(\phi \) coefficient of 0.55 and \(\kappa \) statistic of 0.57 (95% CI 0.47–0.62). Among 156 men with testosterone deficiency by TTLC-MS/MS, 45 (28.8%) were classified as eugonadal by TTTRIA. On the other hand, of the 446 men classified as eugonadal by TTLC-MS/MS, 65 (14.6%) were considered testosterone deficient by TTRIA. Slightly more patients were classified as low testosterone if TTTRIA was used, regardless of the serum testosterone thresholds (Fig. 2).

CONCORDANCE IN THE MAGNITUDE OF THE ASSOCIATION BETWEEN TT CONCENTRATION AND FRACTURE

During the median 7.8 years of follow-up, 112 men sustained a fragility fracture. The incidence of fracture was

Table 1. Baseline characteristics of 602 participants in the study.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, years</td>
<td>72.59 (5.68)</td>
</tr>
<tr>
<td>Weight, kg</td>
<td>78.35 (12.93)</td>
</tr>
<tr>
<td>Height, cm</td>
<td>172.37 (6.32)</td>
</tr>
<tr>
<td>Body mass index, kg/m²</td>
<td>26.34 (3.79)</td>
</tr>
<tr>
<td>Dietary calcium, mg/day</td>
<td>635.62 (342.24)</td>
</tr>
<tr>
<td>Past or present smoker</td>
<td>356 (59.14)</td>
</tr>
<tr>
<td>Lumbar spine BMD, g/cm²</td>
<td>1.26 (0.22)</td>
</tr>
<tr>
<td>Lumbar spine T-score</td>
<td>0.48 (1.87)</td>
</tr>
<tr>
<td>Femoral neck BMD, g/cm²</td>
<td>0.91 (0.15)</td>
</tr>
<tr>
<td>Femoral neck T-score</td>
<td>−1.08 (1.28)</td>
</tr>
<tr>
<td>Serum TT measured by LC-MS/MS ng/dL</td>
<td>430.17 (206.18)</td>
</tr>
<tr>
<td>Serum TT measured by LC-MS/MS nmol/L</td>
<td>14.93 (7.15)</td>
</tr>
<tr>
<td>Serum free testosterone calculated from TTLC-MS/MS, ng/dL (b)</td>
<td>5.91 (2.53)</td>
</tr>
<tr>
<td>Serum free testosterone calculated from TTLC-MS/MS, nmol/L</td>
<td>0.20 (0.09)</td>
</tr>
<tr>
<td>Serum TT measured by RIA, ng/dL</td>
<td>403.01 (195.53)</td>
</tr>
<tr>
<td>Serum TT measured by RIA, nmol/L</td>
<td>13.98 (6.78)</td>
</tr>
<tr>
<td>Serum free testosterone calculated from TTRIA, ng/dL (b)</td>
<td>5.55 (2.45)</td>
</tr>
<tr>
<td>Serum free testosterone calculated from TTRIA, nmol/L</td>
<td>0.19 (0.08)</td>
</tr>
<tr>
<td>Serum estradiol pg/mL</td>
<td>20.27 (9.32)</td>
</tr>
<tr>
<td>Serum estradiol pmol/L</td>
<td>74.41 (34.21)</td>
</tr>
<tr>
<td>Serum SHBG μg/mL</td>
<td>5.35 (2.30)</td>
</tr>
<tr>
<td>Serum SHBG nmol/L</td>
<td>47.59 (20.46)</td>
</tr>
<tr>
<td>Previous fracture</td>
<td>112 (18.60)</td>
</tr>
</tbody>
</table>

\(a \) Data are mean (SD) or n (%).

\(b \) Free testosterone (pmol/L) = 24.00314 × TTRIA/SHBG − 0.04599 × TTRIA² [Sartorius et al. (15)].
Fig. 1. TT measurement comparison between RIA and LC-MS/MS.
(A), Concordance correlation coefficient between TTRIA concentration (x axis) and TTLC-MS/MS concentration (y axis). (B), Bland–Altman plot of the mean ln(TT concentration) of the 2 methods (x axis) and percentage difference in ln(TT concentration) (y axis).
3.4 per 100 person-years (95% CI 3.3–3.5). Most fractures occurred at the hip (26), vertebrae (44), and nonvertebrae (81). Men with fracture had a lower baseline TT concentration than those without a fracture, measured by either LC-MS/MS [mean difference 35 ng/dL (1.2 nmol/L); 95% CI 7 to 77] or RIA [mean difference 45 ng/dL (1.6 nmol/L); 95% CI 5–85]. The hazard ratio of fracture per SD lower TT concentration was 1.23 (95% CI 1.06–1.43) by RIA and 1.41 (1.19–1.64) by LC-MS/MS. The association between TT and fracture risk remained statistically significant after adjusting for SHBG, age, BMD, weight, and lifestyle factors (Table 3). Similarly, every SD lower in calculated free testosterone concentration, computed from TTLC-MS/MS and TTRIA, was associated with a 25% and 22% increase in fracture risk, respectively (see Supplemental Table 1, which accompanies the online version of this article at http://www.clinchem.org/content/vol61/issue9).

On the basis of the association between TT and fracture, we estimated the probabilities of any fracture, hip fracture, vertebral fracture, and nonvertebral fracture with TTRIA (denoted by \(P_{\text{RIA}}\)) and TTLC-MS/MS (\(P_{\text{LC-MS/MS}}\)). Fig. 3 shows the correlation between \(P_{\text{RIA}}\) and \(P_{\text{LC-MS/MS}}\). For each fracture site, the coefficient of correlation between \(P_{\text{RIA}}\) and \(P_{\text{LC-MS/MS}}\) was consistently >0.96, and the mean difference in the predicted probability of fracture was 0.01% (95% CI 6.1% to 6.2%) for any fracture.

Discussion

Accurate measurement of serum testosterone concentrations is essential for the diagnosis and management of male hypogonadism (I). In this study, we used TT as a

Table 2. Concordance in the diagnosis of hypogonadism between LC-MS/MS and RIA methods.

<table>
<thead>
<tr>
<th>Method</th>
<th>Actual TTLC-MS/MS ≤300 ng/dL</th>
<th>Actual TTLC-MS/MS >300 ng/dL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actual TTRIA ≤300 ng/dL</td>
<td>111 (0.71)</td>
<td>65 (0.15)</td>
</tr>
<tr>
<td>Actual TTRIA >300 ng/dL</td>
<td>45 (0.29)</td>
<td>381 (0.85)</td>
</tr>
<tr>
<td>Predicted TTLC-MS/MS ≤300 ng/dL</td>
<td>96 (0.61)</td>
<td>34 (0.08)</td>
</tr>
<tr>
<td>Predicted TTLC-MS/MS >300 ng/dL</td>
<td>60 (0.39)</td>
<td>412 (0.92)</td>
</tr>
</tbody>
</table>

* Data are n (%).

* Predicted TTLC-MS/MS was estimated by Deming equation: \(\ln(\text{TTLC-MS/MS} + 10) = 0.87 + 0.87 \times \ln(\text{TTRIA} + 10)\).
Fracture Risk and Testosterone Measurement Methods

Table 3. Association between TT and fracture risk: analysis for TT_{LC-MS/MS} and TT_{RIA}.

<table>
<thead>
<tr>
<th></th>
<th>TT_{LC-MS/MS}</th>
<th>P</th>
<th>TT_{RIA}</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unadjusted</td>
<td>1.41 (1.19-1.64)</td>
<td><0.001</td>
<td>1.23 (1.06-1.43)</td>
<td>0.006</td>
</tr>
<tr>
<td>Adjusted for SHBG</td>
<td>1.43 (1.23-1.67)</td>
<td><0.001</td>
<td>1.37 (1.20-1.54)</td>
<td><0.001</td>
</tr>
<tr>
<td>Adjusted for SHBG and age</td>
<td>1.28 (1.10-1.49)</td>
<td>0.002</td>
<td>1.12 (0.98-1.30)</td>
<td>0.1</td>
</tr>
<tr>
<td>Adjusted for SHBG, age, and weight</td>
<td>1.30 (1.11-1.52)</td>
<td>0.001</td>
<td>1.18 (1.02-1.37)</td>
<td>0.02</td>
</tr>
<tr>
<td>Adjusted for age, BMD, SHBG, weight, fracture history, calcium intake, and smoking status</td>
<td>1.32 (1.12-1.54)</td>
<td>0.001</td>
<td>1.23 (1.06-1.43)</td>
<td>0.005</td>
</tr>
</tbody>
</table>

* Estimated for every SD decrease of ln(TT concentration). The equivalent SD was 206 ng/dL for back-transformation.

The discordance between RIA and mass spectrometry in the measurement of serum testosterone could be related to matrix effects and the functional sensitivity of each method. Interfering substances or matrix effects could substantially affect the imprecision of immunoassays without an extraction and chromatography component. Because 98% of circulating testosterone binds to serum proteins (16), certain serum compounds that are not removed from serum, especially SHBG, could interfere with the no-extraction immunoassays (17, 18). The discordance could also result from antibody cross-reactivity, inadequate limit of detection, or poor functional sensitivity of the immunoassays (7). Moreover, the current testosterone immunoassays that use testosterone analogs as standards have not been fully validated or standardized (19).

Excellent agreement between TT_{RIA} and TT_{LC-MS/MS} has been reported (8), with correlation coefficients ranging from 0.92 for the automated multipurpose immunoassays from Bayer (Centaur) to 0.98 for a commercially available RIA kit (DPC-RIA, Core Endocrine Laboratory, Penn State University-Hershey Medical Center). All methods except the DPC-RIA, however, had an intercept of the Deming regression significantly different from that of LC-MS/MS, which is commonly considered a reference method. The inconsistency between that study and ours could be a result of differences in the population studied, RIA methods used, or method of data analysis. The participants in the study of Wang et al. (8) were much younger and less likely to have a low TT concentration than our participants. Wang et al. (8) recruited 122 men, ages 18–68 years; meanwhile, all 602 elderly men in our study were age ≥60 years old, with a mean age of 73 years. Aging is known to be associated with decline in serum testosterone (20, 21). More importantly, whereas 29% of our participants had TT concentrations of ≤300 ng/dL, only 25 hypogonadal men in Wang’s study had sera collected before testosterone therapy, a rate of 20%. The higher proportion of low TT concentrations contributes positively to the between-method discordance, since imprecision of RIAs increases at lower TT concentrations (4, 6, 7). The mean ratio of the concentrations of TT_{RIA} to TT_{LC-MS/MS} was 1.06 but varied between 0.5 and 2.5 at low TT concentrations (6). Similarly, disagreement between commercial immunoassays and mass spectrometry has been reported to be ≤5-fold at TT concentrations <230 ng/dL (7). The other possible reason for the better agreement identified in the Wang et al. study is method of analysis. All values that were below the lower limit of quantification or statistical outliers were excluded from their analysis, leaving 101 more centralized samples than ours.
We found that, at the individual level, there was a substantial discordance in the diagnosis of hypogonadism between RIA and LC-MS/MS. Indeed, the κ statistic was only 0.57, a little bit higher than chance agreement (0.5).

We consider that the poor rate of agreement in the diagnosis could be due to the loss of information when a continuous variable is dichotomized (22), especially when a cutpoint is selected arbitrarily (23). Statistically, a population measure, i.e., a correlation coefficient, is not necessarily applicable to an individual, since the former focuses more on a mean than absolute values. On the other hand, an absolute value of TT is used to diagnose whether an individual is hypogonadal. Second, to fulfill clinical classification of male hypogonadism, TT concentration is dichotomized by an arbitrary value. A threshold of low TT concentration has long been controversial (1, 4). The Endocrine Society Position Statement considered a TT concentration of ≤ 200 ng/dL as hypogonadal, whereas a TT concentration of 200–320 ng/dL was considered to be equivocal (4). In contrast, a TT concentration of ≥ 346 ng/dL is reported as healthy in

Fig. 3. Correlation between predicted probabilities of fracture by $T_{\text{LC-MS/MS}}$ and T_{RIA} concentration.
Fracture Risk and Testosterone Measurement Methods

In summary, these data show that there is a moderate concordance in total testosterone measurements between the RIA and LC-MS/MS methods (r = 0.72). Although this moderate concordance could substantially misclassify the status of hypogonadism, it has little effect on the prediction of fracture.

Author Contributions: All authors confirmed they have contributed to the intellectual content of this paper and have met the following 3 requirements: (a) significant contributions to the conception and design, acquisition of data, or analysis and interpretation of data; (b) drafting or revising the article for intellectual content; and (c) final approval of the published article.

Authors’ Disclosures or Potential Conflicts of Interest: Upon manuscript submission, all authors completed the author disclosure form. Disclosures and/or potential conflicts of interest:

Employment or Leadership: A.L. Rockwood, University of Utah.

Consultant or Advisory Role: None declared.

Stock Ownership: None declared.

Honoraria: None declared.

Research Funding: J. Center, institution funding from National Health and Medical Research Council and BUPA Health Foundation.

Expert Testimony: None declared.

Patents: None declared.

Role of Sponsor: The funding organizations played no role in the design of study, choice of enrolled patients, review and interpretation of data, or preparation or approval of manuscript.

References

