c-Rel is required for the development of thymic Foxp3 CD4 regulatory T cells

Iwao Isomura
Stephanie Palmer
Raelene J. Grumont
Karen Bunting
Gerard F. Hoyne

University of Notre Dame Australia, gerard.hoyne@nd.edu.au

See next page for additional authors

Follow this and additional works at: http://researchonline.nd.edu.au/health_article
Part of the Life Sciences Commons, and the Medicine and Health Sciences Commons

This article was originally published as:
http://doi.org/10.1084/jem.20091411

This article is posted on ResearchOnline@ND at http://researchonline.nd.edu.au/health_article/55. For more information, please contact researchonline@nd.edu.au.
Authors

This article is available at ResearchOnline@ND: http://researchonline.nd.edu.au/health_article/55
c-Rel is required for the development of thymic Foxp3+ CD4 regulatory T cells

Iwao Isomura,1 Stephanie Palmer,2 Raelene J. Grumont,1 Karen Bunting,2 Gerard Hoyne,2 Nancy Wilkinson,2 Ashish Banerjee,1 Anna Proietto,1 Raffi Gugasyan,1 Wu Li,1 Alice McNally,3 Raymond J. Steptoe,3 Ranjeny Thomas,3 M. Frances Shannon,2 and Steve Gerondakis1

During thymopoiesis, a unique program of gene expression promotes the development of CD4 regulatory T (T reg) cells. Although Foxp3 maintains a pattern of gene expression necessary for T reg cell function, other transcription factors are emerging as important determinants of T reg cell development. We show that the NF-κB transcription factor c-Rel is highly expressed in thymic T reg cells and that in c-rel−/− mice, thymic T reg cell numbers are markedly reduced as a result of a T cell–intrinsic defect that is manifest during thymocyte development. Although c-Rel is not essential for TGF-β conversion of peripheral CD4+CD25+ T cells into CD4+Foxp3+ cells, it is required for optimal homeostatic expansion of peripheral T reg cells. Despite a lower number of peripheral T reg cells in c-rel−/− mice, the residual peripheral c-rel−/− T reg cells express normal levels of Foxp3, display a pattern of cell surface markers and gene expression similar to those of wild-type T reg cells, and effectively suppress effector T cell function in culture and in vivo. Collectively, our results indicate that c-Rel is important for both the thymic development and peripheral homeostatic proliferation of T reg cells.

Regulatory T (T reg) cells represent a class of T lymphocytes that serve to restrict the extent and duration of immune responses, as well as maintain self-tolerance by suppressing autoreactive T cells (Shevach, 2000; Sakaguchi, 2004, 2005; Fontenot and Rudensky, 2005; Ziegler, 2006). Among the different types of T reg cells described to date, CD4+CD25+ cells that express the transcription factor Foxp3 are the most well characterized T cells with immune-suppressive properties (Fontenot and Rudensky, 2005; Sakaguchi, 2005; Ziegler, 2006). Most Foxp3+ CD4 T cells, referred to as CD4 T reg cells, begin to develop in the thymus between 2 and 3 d after birth (Fontenot et al., 2005a). Like conventional CD4+ T cells, thymus-derived CD4+Foxp3+ T cells (also known as natural T reg [nT reg] cells) undergo positive selection through TCR interactions with self-peptides presented by cortical thymic epithelial cells (Bensinger et al., 2001). Although conventional CD4 single-positive (SP) T cells that express TCRs with low to intermediate affinity for self-peptides are selected to undergo maturation, and those with high-affinity TCRs are eliminated by negative selection (Robey and Fowlkes, 1994), T reg cells appear to develop from CD4 SP thymocytes expressing TCRs with a relatively high affinity for self-antigens (Caton et al., 2004; Liston and Rudensky, 2007). In addition to TCR signals, costimulatory molecules and cytokines, which include CD28 (Tang et al., 2003; Sansom and Walker, 2006) and IL-2 (Bayer et al., 2005; Fontenot et al., 2005b), respectively, contribute to the development of nT reg cells. Consistent with multiple signals being required for nT reg cell development, disrupting various
intracellular signaling pathways engaged by these receptors impairs nT reg cell differentiation (Liston and Rudensky, 2007). Although the majority of Foxp3+ T reg cells develop in the thymus (Fontenot et al., 2005a), TGF-β is also able to promote the differentiation of mature CD4+CD25+Foxp3+ peripheral T cells into CD4+CD25+Foxp3+ cells that possess T cell suppressive properties akin to those of nT reg cells (Chen et al., 2003; Marie et al., 2005).

Although the Foxp3 transcription factor is essential for the T cell–suppressive properties of T reg cells (Fontenot et al., 2003; Hori et al., 2003; Williams and Rudensky, 2007), Foxp3 itself does not appear to be a T reg cell lineage-determining transcription factor (Gavin et al., 2007; Lin et al., 2007; Zheng and Rudensky, 2007). Instead, Foxp3 functions by maintaining a pattern of T reg cell–specific gene expression that is controlled by other transcription factors (Marson et al., 2007; Zheng and Rudensky, 2007; Zheng et al., 2007), which, by inference, must dictate the lineage determination of CD4+Foxp3+ T cells.

The Rel–NF-κB pathway has been implicated in the generation of T reg cells (Siebenlist et al., 2005; Liston and Rudensky, 2007). The transcriptional mediators of this pathway comprise homodimers and heterodimers of five related proteins (c-Rel, RelA, RelB, p50NF-κB1, and p52NF-κB2). In the absence of stimulatory signals, Rel–NF-κB factors are retained in an inactive state within the cytosol by IκB proteins (Hayden and Ghosh, 2008). Signals emanating from the cell surface or intracellular receptors activate a multisubunit IκB kinase (IKK) that, upon phosphorylating IκB, targets it for proteosome-mediated degradation (Scheidereit, 2006), thereby promoting the nuclear translocation of Rel–NF-κB factors. The classical arm of the NF-κB pathway comprises the IKK2 kinase and the transcription factors NF-κB1, RelA, and c-Rel (Gilmore, 2006), whereas the alternate NF-κB pathway requires the IKK1 kinase to activate NF-κB2 and RelB (Gilmore, 2006).

The alternate NF-κB pathway is dispensable for T reg cell development (Siebenlist et al., 2005), whereas inactivation of IKK2 (Schmidt-Supprian et al., 2003) or the combined loss of NF-κB1 and c-Rel (Zheng et al., 2003) markedly reduces thymic and peripheral CD4+CD25+ cell numbers. Despite these links between the classical NF-κB pathway and the generation of T reg cells, the specific roles of individual Rel–NF-κB transcription factors in T reg cell differentiation and function remain to be determined. In this paper, we report that c-Rel is the critical NF-κB transcription factor required to generate normal numbers of thymic and peripheral T reg cells. Consistent with c-Rel being highly expressed in thymic T reg cells, c-rel−/− mice display diminished numbers of thymic CD4+Foxp3+ T cells as a result of a thymocyte-intrinsic survival-independent defect in T reg cell development. Although c-Rel is not essential for TGF-β conversion of CD4+CD25− T cells into CD4+CD25+Foxp3+ cells in culture or in vivo, the reduced capacity of c-rel−/− T reg cells to undergo homeostatic expansion may contribute to the lower numbers of peripheral T reg cells seen in c-rel−/− mice. Despite a significant reduction in number, residual c-rel−/− T reg cells express normal levels of Foxp3 and exhibit a phenotype similar to that of normal T reg cells. Moreover, c-Rel appears to be dispensable for T reg cell immune regulatory function in culture and in vivo. Collectively these findings indicate that c-Rel is a transcription factor that regulates both the thymic development and peripheral homeostatic expansion of T reg cells.

RESULTS
Thymic and peripheral T reg cell numbers are markedly reduced in c-rel−/− mice
Conditional deletion of ikk2 in T lineage cells, which blocks activation of the classical NF-κB pathway, disrupts T reg cell
development (Schmidt-Supprian et al., 2003). This finding prompted us to determine the roles of the individual transcriptional mediators of the classical Rel–NF-κB pathway, namely p50NF-κB1, RelA, and c-Rel, in T reg cell development.

Initially, thymic CD4+Foxp3+ populations were examined in c-rel−/− and nfkβ1−/− mice, as well as in lethally irradiated Ly5.1+ C57BL/6 mice engrafted with embryonic day 13 (E13) rel−/− fetal liver hematopoietic stem cells (Ly5.2+). The use of radiation chimeras is required to examine the role of RelA in T reg cell development as a result of the death of rel−/− embryos at ~E15 from fetal hepatocyte apoptosis (Beg et al., 1995).

Total thymocyte cellularity and the relative frequencies of CD4+CD8−, CD4+CD8+, and CD4−CD8+ thymocytes in 6–8-wk-old mice are normal in the absence of c-Rel, NF-κB1, or RelA (Grossmann et al., 2000; Pohl et al., 2002). However, the proportion of CD4+CD25Foxp3+ thymocytes, although normal in nfkβ1−/− mice and ~2.5-fold lower in rel−/− chimeras, are reduced ~6–7-fold in c-rel−/− mice (Fig. 1 A). c-rel−/− CD4+CD25Foxp3+ thymocyte numbers are also reduced in similar proportions (Fig. 1 A, i) but, interestingly, this population is slightly elevated in the rel−/− chimeras (Fig. 1 A, ii). Given that c-Rel appeared to be the most important of the Rel–NF-κB transcription factors necessary for the generation of CD4+Foxp3+ thymocytes, subsequent work focused on the role of c-Rel in T reg cell development and function.

The peripheral T reg cell population is mainly, but not exclusively, derived from cells generated in the thymus (Fontenot and Rudensky, 2005; Fontenot et al., 2005a; Sakaguchi, 2005, 2004, 2005; Fontenot and Rudensky, 2005). To determine if the T reg cell deficit in c-rel−/− mice occurs at the outset of T reg ontogeny or develops as mice age, CD4+CD25+ and CD4+Foxp3+ thymic populations were compared in wt and c-rel−/− mice as old as 24 wk of age (unpublished data). These findings, summarized in Fig. 1 C, establish that c-Rel is required to generate normal numbers of thymic and peripheral CD4+Foxp3+ T cells.

The T reg cell deficit in c-rel−/− mice arises in neonates

Mouse CD4+Foxp3+ T cells first arise in the thymus within 2–3 d of birth (Fontenot et al., 2005a), and by day 5 (D5) sufficient T reg cells have been generated to protect mice from developing autoimmune disease (Shevach, 2000; Sakaguchi, 2004, 2005; Fontenot and Rudensky, 2005). To determine if the T reg cell deficit in c-rel−/− mice occurs at the outset of T reg ontogeny or develops as mice age, CD4+CD25+ and CD4+Foxp3+ thymic populations were compared in wt and c-rel−/− D2 and D5 neonates, as well as 28-d-old mice. At D2, the earliest time at which thymic Foxp3+ T cells are detectable (Fontenot et al., 2005a), the percentage of CD4+CD25+ thymocytes (5–6% of CD4 SP cells) was similar in wt and c-rel−/− mice (Fig. 2 A). Although the CD4+Foxp3+ population is very low in D2 mice of both genotypes (Fig. 2 A and Table S1), it was found to be smaller in c-rel−/− mice (~2.5% vs. ~0.02% of CD4+CD25+ thymocytes). By D5, despite an increase in the absolute numbers (Table S1) of CD4+ Foxp3+ thymocytes in both wt and c-rel−/− mice, the proportion of diminished numbers of T reg cells in peripheral lymphoid tissues, CD4+Foxp3+ populations were assessed in the spleen and lymph nodes (Fig. 1 B). Whereas c-rel−/− CD4+CD25− T reg cell numbers in both lymphoid compartments are normal (Pohl et al., 2002), CD4+CD25+Foxp3+ T cells are reduced ~3-fold. Loss of c-Rel also leads to a reduction in CD4+CD25−Foxp3+ T cells in these peripheral lymphoid organs. A similar reduction in peripheral CD4+Foxp3+ T cells is also observed in c-rel−/− mice as old as 24 wk of age (unpublished data). These findings, summarized in Fig. 1 C, establish that c-Rel is required to generate normal numbers of thymic and peripheral CD4+Foxp3+ T cells.

Figure 2. Thymic and splenic T reg populations in wt and c-rel−/− neonates. (A and B) Percentages of CD4+CD25+, CD4+CD25+Foxp3+, and CD4+CD25−Foxp3− thymocytes (A) and splenic T cells (B) as a proportion of CD4 SP cells in 2-, 5-, and 28-d-old wt and c-rel−/− mice. Each symbol represents an individual mouse. Data for individual mice were compiled from four independent experiments. Horizontal bars represent the mean values of the data.
CD4+CD25+Foxp3+ cells in the CD4 SP thymocyte population remains four- to fivefold lower in c-rel−/− mice (Fig. 2 A). Unlike at D2, the difference in T reg cell numbers in these mice at D5 was now also reflected in the relative proportion of CD4+CD25+ thymocytes (~5 vs. 3% in wt and c-rel−/− mice, respectively; Fig. 2 A). A similar trend was also observed in the CD4+CD25−Foxp3+ thymocyte populations of D2 and D5 neonates (Fig. 2 A). CD4+Foxp3+ (both CD25+ and CD25−) splenic T cells are also reduced in D5 c-rel−/− neonates (Fig. 2 B) and these trends were replicated in the D28 thymic and spleen samples (Fig. 2 B). Together, these data indicate that the deficit of CD4+Foxp3+ T cells in c-rel−/− mice reflects a failure to generate normal numbers of these cells in the thymus during neonatal development.

The reduction in c-rel−/− T reg cells is caused by a hemopoietic defect

The development of different T cell populations is dependent on thymocyte interactions with other hemopoietic cells, including DCs, as well as nonhemopoietic stroma such as thymic epithelial cells (Takahama, 2006). Rel–NF-kB involvement in the development and function of both hemopoietic (Gerondakis et al., 2006) and epithelial cells (Pasparakis et al., 2002; Gugasyan et al., 2004) prompted the generation of bone marrow chimeras.

Figure 3. The c-rel−/− T reg cell deficit results from a thymocyte-intrinsic defect. (A) The c-rel−/− T reg cell deficit arises from a cell-autonomous defect. wt, c-rel−/−, or mixtures of equal numbers of wt (Ly5.1 and Ly5.2) or wt (Ly5.1) and c-rel−/− (Ly5.2) bone marrow cells were engrafted into irradiated recipients (Ly5.2 mice) and, 8 wk later, T reg cell populations were examined in thymus, spleen, and blood. Each symbol represents an individual mouse. The data are representative of two independent experiments using similar numbers of mice in each experimental group. (B) The T reg cell deficit in c-rel−/− mice is the result of a hemopoietic defect. Irradiated wt and c-rel−/− (Ly5.2) bone marrow (Ly5.1) and, 8 wk later, donor-derived T reg cell (Ly5.1) numbers were determined in the thymus, spleen, and blood. Each symbol represents an individual mouse. The data are representative of two independent experiments using similar numbers of mice in each experimental group. Horizontal bars represent the mean values of the data. (C) Thymic DC-induced T reg cell differentiation in culture. wt and c-rel−/− CD4+CD25+ thymocytes and wt CD8Sirpα− DC cultured with IL-7 for 5 d were stained with control or Foxp3 specific antibodies. The data shown is representative of three independent experiments. In each experiment, the cultures for cells of each genotype were performed in triplicate.
to assess the contributions of the hemopoietic and stromal compartments to the reduction in c-rel$^{-/-}$ T reg cells.

In irradiated wt (Ly5.1) recipients of c-rel$^{-/-}$ bone marrow (Ly5.2), the percentage and absolute number (not depicted) of CD4$^+$CD25$^+$Foxp3$^+$ thymocytes, like those in c-rel$^{-/-}$ mice, were reduced compared with recipients of wt (Ly5.2) bone marrow (Fig. 3 A). In contrast, the CD4$^+$CD25$^+$Foxp3$^+$ thymic population was normal in the reciprocally bone marrow donor/recipient combination where c-rel$^{-/-}$ (Ly5.2) mice were engrafted with Ly5.1$^+$ wt bone marrow (Fig. 3 B). Similar conclusions were made for the T reg cell population in the peripheral lymphoid tissues and blood of the chimeras (Fig. 3, A and B). These experiments indicate that the thymic and peripheral T reg cell deficiency in c-rel$^{-/-}$ mice represents a hemopoietic rather than a stromal defect.

The role of c-Rel in promoting cell survival through the induction of genes encoding Bcl-2 prosurvival proteins (Gerondakis and Strasser, 2003) raised the possibility that a survival defect might account for the reduced number of c-rel$^{-/-}$ thymic or peripheral T reg cells. This was assessed by introducing a bcl-2 transgene (bcl-2Tg) under the control of the hemopoietic-restricted vav promoter (Ogilvy et al., 1999) onto the c-rel$^{-/-}$ background. The bcl-2Tg increased overall thymocyte cellularity in wt and c-rel$^{-/-}$ mice compared with nontransgenic counterparts (not depicted), yet bcl-2Tg expression did not correct the selective reduction in c-rel$^{-/-}$ CD4$^+$CD25$^+$Foxp3$^+$ thymocytes (Fig. 4). Although bcl-2Tg expression led to an increase in the proportion of CD4$^+$CD25$^+$Foxp3$^+$ thymocytes in both wt and c-rel$^{-/-}$ mice when compared with nontransgenic counterparts (compare Fig. 4 and Fig. 1 A), the frequency of this Foxp3$^+$ population remained lower in c-rel$^{-/-}$/bcl-2Tg compared with c-rel$^{-/-}$/bcl-2$^{+/+}$ mice (Fig. 4). This indicated that Bcl2 expression has a differential impact on the CD4$^+$CD25$^+$Foxp3$^+$ and CD4$^+$CD25$^+$Foxp3$^+$ thymocyte populations. An examination of the CD4$^+$Foxp3$^+$ populations in the spleen and lymph nodes of c-rel$^{-/-}$/bcl-2Tg and c-rel$^{-/-}$/bcl-2$^{+/+}$ mice revealed a similar picture to that seen in the thymus, with enforced Bcl-2 expression failing to rescue the diminished c-rel$^{-/-}$ CD25$^+$Foxp3$^+$ T reg cell deficit in c-rel$^{-/-}$ mice.

The reduction in c-rel$^{-/-}$ thymic T reg cells is a result of impaired survival

The role of c-Rel in promoting cell survival through the induction of genes encoding Bcl-2 prosurvival proteins (Gerondakis and Strasser, 2003) raised the possibility that a survival defect might account for the reduced number of c-rel$^{-/-}$ thymic or peripheral T reg cells. This was assessed by introducing a bcl-2 transgene (bcl-2Tg) under the control of the hemopoietic-restricted vav promoter (Ogilvy et al., 1999) onto the c-rel$^{-/-}$ background. The bcl-2Tg increased overall thymocyte cellularity in wt and c-rel$^{-/-}$ mice compared with nontransgenic counterparts (not depicted), yet bcl-2Tg expression did not correct the selective reduction in c-rel$^{-/-}$ CD4$^+$CD25$^+$Foxp3$^+$ thymocytes (Fig. 4). Although bcl-2Tg expression led to an increase in the proportion of CD4$^+$CD25$^+$Foxp3$^+$ thymocytes in both wt and c-rel$^{-/-}$ mice when compared with nontransgenic counterparts (compare Fig. 4 and Fig. 1 A), the frequency of this Foxp3$^+$ population remained lower in c-rel$^{-/-}$/bcl-2Tg compared with c-rel$^{-/-}$/bcl-2$^{+/+}$ mice (Fig. 4). This indicated that Bcl2 expression has a differential impact on the CD4$^+$CD25$^+$Foxp3$^+$ and CD4$^+$CD25$^+$Foxp3$^+$ thymocyte populations. An examination of the CD4$^+$Foxp3$^+$ populations in the spleen and lymph nodes of c-rel$^{-/-}$/bcl-2Tg and c-rel$^{-/-}$/bcl-2$^{+/+}$ mice revealed a similar picture to that seen in the thymus, with enforced Bcl-2 expression failing to rescue the diminished c-rel$^{-/-}$ CD25$^+$Foxp3$^+$ thymocyte population.
population (Fig. 4). Collectively, these data show that the reduced number of CD4+Foxp3+ cells in c-rel−/−/mice is not the result of a defect in the Bcl-2 survival pathway.

c-Rel is up-regulated in thymic T reg cells

The reduction in c-rel−/− thymic T reg cells resulting from a thymocyte intrinsic defect raised the issue of c-Rel expression during thymopoiesis and how this might relate to T reg cell development. This was determined by Western blot analysis of c-Rel expression in total cell lysates from CD4+CD8+, CD4+CD8−, CD4+CD25−, and CD4+CD25+ thymocytes (Fig. 5 A). Whereas c-Rel is barely detectable in CD4+CD8+ cells and its expression is only marginally higher in CD4+CD8− and CD4+CD25− thymocytes, c-Rel levels, like those of Foxp3, are dramatically elevated in the CD4+CD25+ population. RelA levels in contrast do not differ between CD4+CD25− and CD4+CD25+ thymocytes (Fig. 5 A). Consistent with the protein expression data, real-time PCR confirmed that c-rel, but not rpla, messenger RNA (mRNA) is specifically up-regulated in CD4+CD25+ thymocytes (Fig. 5 B). nfkB1 mRNA levels are also somewhat elevated in CD4+CD25+ thymocytes compared with CD4+CD25− cells. These findings, coupled with the phenotype in c-rel−/− mice, indicated that high levels of c-Rel may be necessary for the maintenance of the T reg cell population. Surprisingly, Western blotting of cytosolic and nuclear fractions from wt CD4+CD25+ thymocytes revealed that c-Rel could only be detected in the cytosol (Fig. 5 C), indicating that constitutive c-Rel activation does not appear to be essential for the maintenance of thymic T reg cells. The expected pattern of c-Rel expression in the cytoplasm and nucleus of resting and activated B cells (Fig. S1) validated the accuracy of the fractionation process used to examine T reg cells.

c-Rel is required for the homeostatic proliferation of peripheral T reg cells

Although thymus-derived CD4+Foxp3+ T cells are the major source of T reg cells (Fontenot and Rudensky, 2005; Fontenot et al., 2005a; Sakaguchi, 2005; Ziegler, 2006), the TGF-β–induced differentiation of CD4+CD25− T cells into T reg cells (Chen et al., 2003; Marie et al., 2005), coupled with T reg cell proliferation, collectively determines the size of the peripheral T reg cell population. To determine if c-Rel is necessary for TGF-β–dependent conversion of CD4+CD25− T cells into T reg cells, wt and c-rel−/− CD4+CD25− T cell cultures were initially subjected to TCR activation in the absence or presence of TGF-β. Given that IL-2 enhances the generation of TGF-β–induced T reg cells in culture by promoting T cell proliferation (Kretschmer et al., 2005) and TCR-mediated CD4+CD25− T cell proliferation requires the c-Rel dependent expression of IL-2 (Köntgen et al., 1995; Rao et al., 2003), the influence of IL-2 on TGF-β–induced c-rel−/− T reg cell differentiation was also determined (Fig. 6 A).

Without TGF-β, ~1% of activated wt and c-rel−/−/cells were Foxp3+. In the absence of IL-2, this increased to ~33% for cells of both genotypes in the presence of TGF-β (Fig. 6 A). After the addition of IL-2 during TGF-β–induced T reg cell differentiation, the proportion of cultured wt and c-rel−/− CD4+Foxp3+ T cells increased to between 93 and 95% (Fig. 6 A). Although the frequency of TGF-β–generated wt and c-rel−/− Foxp3+ cells was similar, absolute numbers of c-rel−/− Foxp3+ cells recovered in culture were two- to threefold lower than for wt Foxp3+ cells, irrespective of whether IL-2 was present (Fig. S2). This reduced number of c-rel−/−/Foxp3+ cells reflects a decrease in c-rel−/− CD4+T cells recovered after TGF-β stimulation (Fig. S2) that coincides with diminished TCR-mediated c-rel−/− T cell proliferation (Fig. S3).

Figure 5. c-Rel is highly expressed in thymic T reg cells. (A) Western blot analysis of c-Rel, RelA, and Foxp3 expression in different thymocyte populations. Western blot analysis of total cell lysates was used to determine c-Rel and Foxp3 expression in purified wt populations of CD4+CD8+, CD4+CD8−, CD4+CD25−, and CD4+CD25+ thymocytes and RelA expression in wt CD4+CD25− and CD4+CD25+ thymocyte populations. ERK or actin expression served as loading controls. The data are representative of two independent experiments using different lysate samples prepared from thymocyte populations purified from the pooled thymi of three mice for each experiment. (B) c-rel, rela, and nfkB1 mRNA levels in thymocyte populations. The levels of c-rel, rela, and nfkB1 mRNA expressed in purified CD4+CD25+ and CD4+CD25− thymocyte populations were determined by real-time PCR. The data represents duplicate PCRs performed on individual samples from each of four independent sets of cells. Error bars represent SEM. (C) c-Rel is localized in the cytoplasm of thymic T reg cells. Nuclear and cytoplasmic fractions from purified CD4+CD25+ thymocytes were subjected to Western blotting analysis using antibodies for c-Rel, ERK, and histone H3. The data shown is representative of two independent experiments using different preparations of nuclear and cytoplasmic lysates.
The conversion of c-rel−/− CD4+CD25− T cells into CD4+Foxp3+ cells in vivo was also examined (Curotto de Lafaille et al., 2004; Almeida et al., 2006). The relative efficiency with which a T reg cell population develops from c-rel−/− CD4+CD25+ cells was determined by injecting a 1:1 ratio of wt (Ly5.1) and c-rel−/− (Ly5.2) CD4+CD25− T cells into rag-1−/− mice. 18 d later, the number (Fig. 6 B) and frequency (Fig. S4) of CD4+Foxp3+ cells from each donor type in recipient mice (six per group) from three independent sets of cells. In contrast with

nor population in the lymph nodes of individual mice was compared using paired data analysis. Although naive c-rel−/− CD4+CD25− T cells can convert to T reg cells in vivo, the absolute number and percentage of c-rel−/− T reg cells was reduced when compared with the wt population.

To determine if the impaired T reg cell proliferation observed in culture also occurs in vivo, we examined the homeostatic expansion of c-rel−/− T reg cells under competitive conditions in a lymphopenic host. A 1:1 mix of wt (Ly5.1+ and Ly5.2+) or wt (Ly5.1+) and c-rel−/− (Ly5.2−) CD4+CD25+ T cells was introduced into rag-1−/− mice, and between 4 and 12 wk later the number of T reg cells in lymph nodes from the different donors was determined. In contrast with

Figure 6. The roles of c-Rel in T reg cell conversion and homeostatic expansion. (A) TGF-β-induced differentiation of c-rel−/− T reg cells in culture. wt and c-rel−/− splenic CD4+CD25− T cells incubated with anti-CD3 antibodies and irradiated T cell–depleted allophycocyanin (APC) in the absence or presence of TGF-β (with or without IL-2) for 4 d were stained with antibodies specific for CD25 and Foxp3. Representative dot plots from one of four independent experiments are presented with the percentage of cells in the relevant quadrants indicated. In each experiment, there were triplicate cultures for each set of stimulation conditions. (B) T reg cell conversion in vivo. Mesenteric lymph node (MLN) cells isolated from rag-1−/− mice injected 18 d earlier with either a 1:1 mix of purified splenic CD4+CD25− wt (Ly5.1+ and Ly5.2+) or wt (Ly5.1+) and c-rel−/− (Ly5.2−) T cells were stained with antibodies specific for CD25 and Foxp3. The data compares the absolute numbers of wt (Ly5.1+ and Ly5.2+, squares and circles, respectively) and c-rel−/− (Ly5.2−, triangles) CD4+Foxp3+ cells detected in the mesenteric lymph nodes of individual mice receiving each mixture of cells. Horizontal bars represent the mean values of the data. Error bars represent SD. The data were analyzed using a paired Student’s t test and is representative of two independent experiments, with a minimum of five mice in each recipient group. (C). c-Rel is necessary for optimal homeostatic expansion of T reg cells in lymphopenic mice. MLN cells isolated from rag-1−/− mice injected between 4 and 8 wk earlier with either a 1:1 mix of purified wt (Ly5.1+ and Ly5.2+, squares and circles) or wt (Ly5.1− and squares) and c-rel−/− (Ly5.2−, triangles) splenic CD4+CD25− T cells were stained with antibodies specific for CD4, CD8, CD45.1 (Ly5.1), and Foxp3. The data shows the number of MLN T reg cells of each donor type in recipient mice (six per group) from one experiment. The data shown is representative of three independent experiments with five or six mice in each recipient group.

Figure 7. Foxp3, CD25, CTLA4, and GITR expression in thymic and splenic CD4+CD25+ and CD4+CD25−Foxp3+ T cells. (A and B) wt and c-rel−/− CD4+CD25+ thymocytes (A) and splenocytes (B) were stained with antibodies for Foxp3, CD25, CTLA4, or GITR. Representative profiles from one of five independent experiments are shown for wt (line) and c-rel−/− (dashed line) cells stained with control (filled) and test (open) antibodies. In each experiment, a single mouse of each genotype was used. (C) Relative mRNA levels for Foxp3, cd25, ctl4a, and gitr were determined by RT-PCR from purified populations of wt (closed) and c-rel−/− (open) CD4SP, CD4+CD25−, and CD4+CD25+ thymocytes. The data represents the mean value from duplicate PCRs performed on individual samples from each of three independent sets of cells.
control mice, which retain a similar ratio of wt Ly5.1+ and Ly5.2+ T reg cells to the starting populations after homeostatic expansion, the number of c-rel−/− T reg cells was always significantly less compared with cotransferred wt T reg cells (Fig. 6 C). This indicates that the capacity of c-rel−/− T reg cells to undergo homeostatic expansion is reduced.

Phenotypic properties of c-rel−/− CD4+ T reg cells

Although c-Rel is necessary for generating normal numbers of thymic and peripheral T reg cells, it was unclear what impact the absence of c-Rel had on the phenotype of the remaining T reg cells. This issue was addressed by comparing the mRNA and protein expression of various characteristic T reg cell markers in wt and c-rel−/− CD4+CD25+ thymocytes and splenic T cells (Fig. 7). Real-time PCR and intracellular staining established that the levels of Foxp3 expression are equivalent in wt and c-rel−/− CD4+CD25+ thymocytes and splenic T cells (Fig. 7, A and C). This indicates that c-Rel does not control Foxp3 expression. Although CD25 and CTLA4 protein expression is normal in c-rel−/− thymic and splenic T reg cells, glucocorticoid-induced TNF receptor–related (GITR) protein levels are marginally lower on cells, glucocorticoid-induced TNF receptor–related (GITR) protein expression is normal in splenic T cells (Fig. 7, A and C). This indicates that c-Rel does not control Foxp3 expression. Although CD25 and CTLA4 protein expression is normal in c-rel−/− thymic and splenic T reg cells, glucocorticoid-induced TNF receptor–related (GITR) protein levels are marginally lower on c-rel−/− CD4+CD25+ thymocytes but not c-rel−/− CD4+CD25+ splenic T cells (Fig. 7, A and B). These data are also borne out by mRNA analyses (Fig. 7 C and not depicted).

Genes expressed in CD4+ T cells, including those relevant to CD4+Foxp3+ T reg cell function (Marson et al., 2007; Zheng et al., 2007) and genes known to be c-Rel targets (Bunting et al., 2007), were also examined by real-time PCR (Table I). As expected, a group of these genes were enriched in the thymic or splenic CD4+CD25+ population compared with the CD4+CD25− population (Table I). Several of these genes, including Il10, 41BB, CREM, MAP3K8, Irf4, Bcl2I, Ox40, and Ebi3, showed a decrease in expression (generally ~2–3-fold) in c-rel−/− CD4+CD25+ thymocytes compared with WT CD4+CD25+ thymocytes (Table I). Expression of a smaller number of the genes examined, namely CD127, CD40L, and Bcl2, was decreased in the thymic CD4+CD25+ population compared with CD4+CD25− cells (Table I), and, interestingly, expression of several of these genes were increased in the absence of c-Rel (Table I). In contrast, loss of c-Rel did not significantly influence gene expression patterns in splenic CD4+CD25+ T cells (unpublished data). Therefore, we conclude that c-Rel appears to have a role in modulating the gene expression profile of thymic CD4+CD25+ cells.

Real-time PCR and intracellular staining established that the levels of Foxp3 expression are equivalent in wt and c-rel−/− CD4+CD25+ thymocytes and splenic T cells (Fig. 7, A and C). This indicates that c-Rel does not control Foxp3 expression. Although CD25 and CTLA4 protein expression is normal in c-rel−/− thymic and splenic T reg cells, glucocorticoid-induced TNF receptor–related (GITR) protein levels are marginally lower on c-rel−/− CD4+CD25+ thymocytes but not c-rel−/− CD4+CD25+ splenic T cells (Fig. 7, A and B). These data are also borne out by mRNA analyses (Fig. 7 C and not depicted).

Table I. Comparison of mRNA levels in CD4SPCD25+ and CD4SPCD25− thymocytes in WT and c-rel−/− mice

<table>
<thead>
<tr>
<th>Gene name</th>
<th>Fold enrichment in CD4SPCD25+ compared with CD4SPCD25− thymocytes</th>
<th>Fold change in CD4SPCD25+ thymocytes between WT and c-rel−/− mice</th>
</tr>
</thead>
<tbody>
<tr>
<td>Il10</td>
<td>1.63</td>
<td>0.23</td>
</tr>
<tr>
<td>Ebi3</td>
<td>3.125</td>
<td>0.38</td>
</tr>
<tr>
<td>Tnfrsf9 (41BB)</td>
<td>26.6</td>
<td>0.46</td>
</tr>
<tr>
<td>Nt5e (CD73)</td>
<td>7.9</td>
<td>0.55</td>
</tr>
<tr>
<td>Tnfrsf4 (Ox40)</td>
<td>6.9</td>
<td>0.53</td>
</tr>
<tr>
<td>Map3k8</td>
<td>3.2</td>
<td>0.17</td>
</tr>
<tr>
<td>CreM</td>
<td>2.8</td>
<td>0.09</td>
</tr>
<tr>
<td>Bcl12</td>
<td>2.75</td>
<td>0.54</td>
</tr>
<tr>
<td>Irf4</td>
<td>2.25</td>
<td>0.33</td>
</tr>
<tr>
<td>Itf7 (CD127)</td>
<td>0.31</td>
<td>1.8</td>
</tr>
<tr>
<td>Cd401g</td>
<td>0.28</td>
<td>3.1</td>
</tr>
<tr>
<td>Bcl12</td>
<td>0.22</td>
<td>3.0</td>
</tr>
</tbody>
</table>

Values given for fold enrichment and fold change are means of at least two independent biological replicates with duplicate PCRs performed for each experiment.

c-rel−/− T reg cells inhibit T cell–dependent colitis

To determine if c-rel−/− T reg cells can inhibit T cell–mediated autoimmune disease, we used a model of T cell–dependent colitis induced in Rag-deficient mice after the adoptive transfer of CD4+CD25−CD45RB+B+ T cells that can be prevented by cotransferring T reg cells (Asseman et al., 1999). CD4+CD25−CD45RB+B+ T cells (4 × 10^5) were injected into rag−/− mice alone or with 10^5 wt or c-rel−/− CD4+CD25+ T cells. Mice were monitored for signs of illness (weight loss and diarrhea) over a 10-wk period. All sick mice and any remaining healthy mice were euthanized and histological analysis of colon sections performed. Whereas all mice injected with only CD4+CD25−CD45RB+B+ T cells developed colitis,
no histological evidence of colitis was observed in animals that had also received wt or c-rel−/− splenic T reg cells (Fig. 8, D and E). This indicates that c-Rel is dispensable for the immune suppressive function of T reg cells in this model of autoimmune disease.

DISCUSSION

Little is currently known about the roles of the classical NF-κB pathway in the development or function of T reg cells. In this paper, we show that among the transcription factors operating downstream of this pathway, c-Rel is the most important for T reg cell development. T cell–intrinsic expression of c-Rel, although necessary for generating normal numbers of thymic T reg cells, is not essential for TGF-β–mediated T reg cell differentiation. Despite a need for c-Rel during nT reg cell development and peripheral T reg cell homeostasis, c-rel−/− T reg cells effectively suppress CD4+ effector T cell proliferation in culture and prevent the induction of colitis in rag1−/− mice engrafted with CD4+CD45RBhi T cells. These findings support a model in which the development of T reg cells in the thymus and maintenance of the T reg cell phenotype have distinct molecular requirements, with c-Rel belonging to that class of transcription factors whose function is important in regulating thymic T reg cell differentiation.

Previously, nonredundant roles for c-Rel in the T cell lineage were thought to be restricted to mature T cells and involve functions such as proliferation, survival, and cytokine production (Gerondakis et al., 2006). In this paper, we establish that c-Rel is required during thymic T reg cell development, with the absence of c-Rel leading to a marked reduction in both CD4+CD25+Foxp3+ and CD4+CD25−Foxp3+ thymocytes. The importance of c-Rel being expressed in thymic T reg cells during their development, as opposed to thymic stromal cells or other hemopoietic cells such as DC, was confirmed using mixed bone marrow chimeras and cell culture models of T reg cell differentiation. Consistent with this conclusion, c-Rel expression is markedly elevated in thymic T reg cells compared with conventional CD4 or CD8SP thymocytes.

Figure 8. c-rel−/− T reg cells inhibit T cell proliferation in culture and suppress CD4 T cell–dependent colitis. Varying numbers of wt and c-rel−/− T reg cells (suppressors) from various sources (see A–C) incubated in culture with a fixed number of wt splenic CD4+CD25− T cells (effectors), expressed as a ratio, were activated with anti-CD3 antibodies and irradiated T cell–depleted APC for 72 h. Proliferation was monitored by 3H-thymidine incorporation. The data shown in A–C is the SEM for four independent experiments using each different source of T reg cells. Every data point was performed in triplicate for each experiment. (A) Splenic T reg cells from wt and c-rel−/− mice. (B) Foxp3+ cells generated by transducing wt and c-rel−/− CD4+CD25− splenic T cells with GFP-Foxp3 retroviruses. (C) Foxp3+ cells generated from TGF-β+ IL-2–treated wt and c-rel−/− CD4+CD25− splenic T cells. rag1−/− mice injected with CD4+CD45RBhi T cells (4 × 10⁷) in the absence or presence of wt or c-rel−/− CD4+CD25− T cells (10⁷, >87% Foxp3+) were monitored regularly for up to 10 wk. During this period, mice displaying signs of illness or weight loss were sacrificed. After 10 wk, the remaining mice were weighed and sacrificed. The colons were removed from all mice and processed for histology. (D) Representative hematoxylin and eosin–stained colon sections from rag1−/− mice receiving CD4+CD45RBhi T cells alone or with wt or c-rel−/− CD4+CD25− T cells (n = 12 mice for each cohort). Bars, 875 µM. (E) Histology scores for rag1−/− mice receiving CD4+CD45RBhi T cells alone or with wt or c-rel−/− CD4+CD25− T cells based on a modification of Berg et al. (1996). *, P < 0.02; **, P < 0.05.
Current models of thymic T reg cell differentiation favor a multistep process controlled by TCR, costimulatory, and cytokine signals, each of which is required during specific stages of development (Liston and Rudensky, 2007). Given that TCR and CD28 signaling are both crucial for T reg cell development (Liston and Rudensky, 2007), with c-Rel functioning downstream of both receptors in conventional CD4+ T cells (Venkataraman et al., 1995; Kahn-Perlès et al., 1997), c-Rel could conceivably control thymic T reg cell differentiation at a single or multiple points. Although our data demonstrates that a proportion of CD25+Foxp3−CD4SP thymocytes, a population enriched for T reg cell precursors (Lio and Hsieh, 2008), appears relatively normal at the onset of T reg cell development in c-rel−/− neonates, we cannot rule out that the generation of the CD25+Foxp3− T reg cell precursor population in c-rel−/− mice is not affected. Alternatively, given that Foxp3+ T reg thymocytes are markedly diminished in 5-d-old c-rel−/− neonates, c-Rel may promote the development of T reg cells arising from a CD25+Foxp3−CD4SP precursor or control the expansion of T reg cells once differentiation is complete. Although the differentiation of T reg cells from a CD4+CD25+Foxp3− precursor is IL-2 dependent (Bayer et al., 2005; Fontenot et al., 2005b) and c-Rel regulates il2 transcription in conventional CD4 T cells (Köntgen et al., 1995; Rao et al., 2003), the inability of mixed bone marrow chimeras to reverse the thymic c-rel−/− T reg cell deficit indicates that it is not the result of a failure to express IL-2 or other soluble factors. Furthermore, the inability of a Bcl-2 transgene to reverse the c-rel−/− T reg cell deficit rules out a role for c-Rel in controlling thymic T reg cell survival during or after differentiation, a function served by c-Rel in several other cell types (Gerondakis and Strasser, 2003; Gerondakis et al., 2006). Recent studies (Barnes et al., 2009; Molinero et al., 2009) have demonstrated that mice lacking functional CARMA1, a component of the CMB (CARMA1−Bcl10−Malt1) TCR adaptor complex required for NF-κB activation (Lin and Wang, 2004), also have markedly reduced numbers of thymic T reg cells. Although CARMA1 is required for both TCR-dependent NF-κB and JNK2 activation (Barnes et al., 2009), the finding that the T reg cell deficit in CARMA mutant mice, like the c-rel−/− mice, arises from a T cell–intrinsic defect that is independent of Bcl-2 prosurvival signals (Barnes et al., 2009; Molinero et al., 2009), provides strong support for a model in which the TCR–dependent activation of c-Rel via CARMA1 is important in T reg cell development.

The intriguing finding that c-Rel is cytosolic rather than nuclear in thymic T reg cells lends support to the notion that c-Rel is required for the differentiation rather than the maintenance of T reg cells. However, sustained expression of c-Rel in thymic and splenic (unpublished data) T reg cells points to the likelihood that c-Rel serves additional functions in these cells in response to other signals. It remains to be determined what types of stimuli, which could include antigen, costimulatory, and cytokine signals, promote the nuclear expression of c-Rel in T reg cells once differentiation in the thymus is complete.

c-Rel is not required for TGF-β–dependent differentiation of CD4+CD25− T cells into Foxp3+ T reg cells in culture, nor is it essential for T reg cell conversion in vivo. Although the size of the T reg cell population that arises in a lymphopenic environment from c-rel−/− CD4+CD25− T cells is reduced when compared with wt cells, it remains unclear whether this reflects a genuine defect in the efficiency with which conversion occurs in vivo or whether it is simply the result of the impaired proliferation of the converted T reg cells, which is controlled by c-Rel. So although a failure to produce normal T reg cell numbers in the thymus almost certainly accounts for some of the peripheral T reg cell deficit in c-rel−/− mice, the reduced capacity of c-rel−/− T reg cells to undergo normal homeostatic expansion is also likely to contribute to the overall reduction in peripheral c-rel−/− T reg cell numbers.

Despite being reduced in number, the remaining thymic c-rel−/− T reg cells, as assessed by key T reg cell marker expression, appear relatively normal. Foxp3 mRNA and protein levels are unchanged, as is the expression of characteristic T reg cell markers such as CTLA4, CD25, CD37, and CD73. Similar findings were made for splenic and lymph node T reg cells from c-rel−/− mice, plus c-rel−/− T reg cells generated in culture either by TGF-β treatment or enforced Foxp3 expression (unpublished data). Nevertheless, the expression of several genes was found to be lower or higher (~2–3-fold in most instances) in c-rel−/− CD4+CD25+ thymocytes but not in peripheral T reg cells, which is consistent with the main role of c-Rel in the generation of thymic Foxp3+ cells. These differences point to c-Rel serving as a modulator of transcription in thymic T reg cells, which is consistent with its role in other cell types, including CD4+CD25+ effector T cells (Bunting et al., 2007). It remains to be determined whether these differences in gene expression identified to date contribute to the reduction in c-rel−/− thymic T reg cell numbers.

Residual c-rel−/− T reg cells can inhibit CD4 effector T cell proliferation in culture and, importantly, prevent colitis in rag1−/− mice engrafted with CD4+CD45RBlow T cells. This indicates that the immune modulatory function of the remaining c-rel−/− T reg cells appears to be relatively normal. The remaining T reg cells in c-rel−/− mice also appear to be sufficient in number and activity to control antigen-dependent T cell effector responses. T reg depletion in vivo by anti-CD25 antibody administration increases the frequency of influenza virus–specific CD8 cytotoxic T cells in mice during the primary immune response (Haeryfar et al., 2005). Nevertheless, the number of influenza virus–specific CD8 effector T cells induced in the spleen and lungs of influenza virus–infected c-rel−/− mice is normal (Harling-McNabb et al., 1999). Similarly, although the OVA-induced proliferation of OT-I TCR transgenic T cells is enhanced after T reg depletion (Salem et al., 2007; Fig. S6 A), the expansion of antigen-stimulated OT-I CD8 T cells is equivalent in wt and c-rel−/− mice (Fig. S6 B; Mintern et al., 2002). Although these findings indicate that there are sufficient T reg cells that function relatively normally in c-rel−/− mice to prevent the development...
of autoimmune disease and limit effector T cell activity during certain immune responses, it remains a possibility that defects in other c-rel-/- cells, such as effector T cells or DC, also contribute to the failure of autoimmune disease to develop in these mice.

Collectively, the data presented in this paper indicates that c-Rel belongs to a class of transcription factors required for thymic T reg cell differentiation and peripheral homeostatic proliferation but not the immune function of mature T reg cells. However, this needs to be confirmed by examining the function of c-rel-/- T reg cells across the gamut of immune responses controlled by T reg cells.

Materials and Methods

Mice. C57BL/6 mice (Ly5.1 and Ly5.2) were used as wt controls. c-rel-/- (Köntgen et al., 1995), sfkb1-/- (Shu et al., 1995), rela-/- (Beg et al., 1995), nog-/-, var-bcl-2 transgenic (bcl-2T); Ogilvy et al., 1999), and c-rel-/- bcl-2/- (Grunmont et al., 2002) mice are all on a C57BL/6 background (Ly5.2, N: 9–12 backcrossed generations; rela-/-, 35 backcrossed generations). OT-I (C57Bl/6) mice were on a Ly5.1 background. With the exception of E14 rela-/-, rela-/-, and rela-/- embryos used for fetal liver hemopoietic cell engraftment of irradiated recipients and neonates used for ontogeny studies, all other experimental mice were used between 7 and 10 wk of age. Genotypes of embryos from rela-/- intercrosses were determined by PCR. All animal protocols were approved by the Research Directorate of Melbourne Health, the Animal Ethics Committee of the Australian National University, and the University of Queensland Animal Ethics Committee.

Reagents. The following antibodies were used: biotin, PE, APC, or Cy5-conjugated anti-CD4 (GK1.5), anti-mouse biotin-conjugated anti-CD3e (145-2C11), FITC-conjugated anti-CD25 (PC61.1), PE-conjugated anti-CD4-PE, anti–CD25-FITC, and sort cells with anti-CD3, anti-CD90, anti-TER119, anti-RTB68C5, anti-CD19, anti-CD11b, and anti-F4/80. For conventional DC isolation, enriched preparations were stained with anti-CD11c-FITC, anti-CD8-PE, anti-CD45RA-APC, and anti–Sirpα-biotin plus SA-PE-Cy7. Conventional DCs with high forward scatter and bright staining for CD11c were then separated into CD8+Sirpα+ and CD8+Sirpα- populations. The purity of the sorted DC was >98%.

Isolation of CD4+CD25+ and CD4+CD25- T cells. CD25+ and CD25- CD4+ T cells were purified by first using an enrichment step that involved depleting anti-CD8-biotin–labeled CD8+ cells with anti-biotin microbeads (Miltenyi Biotec), after which the unbound flow-through fraction stained with anti–CD4-PE, anti-CD8-biotin plus SA-PE-Cy5, and anti-CD25-FITC was sorted for CD4+CD25+ and CD4+CD25- thymocytes using a MoFlo (Dako). T reg cells in spleen and lymph nodes were isolated from wt and c-rel-/- mice by preculture enriching cell suspensions stained with biotinylated anti-CD4 using anti-biotin magnetic beads (Miltenyi Biotec), followed by staining with anti–CD4-PE and anti–CD25-FITC and sorting for CD4+CD25+ and CD4+CD25- T cells. The purity of sorted CD4+CD25+ T cells was typically >96%.

Flow cytometric analysis. T cells in single cell suspensions of thymus, spleen, and lymph nodes prepared from wt and c-rel-/- neonates (D2 and D3) or adult mice were stained with anti–CD4-APC and anti–CD25-FITC antibodies. Thymocytes were also stained with biotinylated anti-CD8 antibodies and SA-PerCP. Intracellular Foxp3 stains were then performed using PE-conjugated anti-Foxp3 antibodies (ebiSciences). In some experiments, intracellular staining with anti–CTLA-4-PE antibodies was performed after surface staining cells for CD4, CD25, CD8, GTR, and Foxp3 (APC-conjugated Foxp3 antibodies). Stained cells were analyzed using a FACScalibur (BD) or LSR (BD), and the data was analyzed using CellQuest Pro software (BD).

Generation and analysis of radiation bone marrow chimeras. Bone marrow cells (2 × 10⁶) isolated from the femurs of wt or c-rel-/- mice were injected into 8-wk-old lethally irradiated (2 × 550 Rad) recipients. The different combinations of bone marrow chimeras were wt or c-rel-/- (both Ly5.2) bone marrow transferred into wt (Ly5.1) mice; wt (Ly5.1) or c-rel-/- (Ly5.2) bone marrow transferred into c-rel-/- (Ly5.2) mice; and a 1:1 mix of 10⁶ cells each of wt (Ly5.1) and c-rel-/- (Ly5.2) bone marrow injected into wt (Ly5.1) mice. Reconstitution of the hemopoietic compartment with donor stem cells was assessed 6 wk after transplantation by examining peripheral blood collected from the retroorbital vein. T reg cells from the thymus and spleen of successfully engrafted mice were analyzed 8 wk after transplantation.

Isolation of thymic DC. Pooled thymuses were used for DC extraction as described elsewhere (O’Keefe et al., 2005). In brief, single cell thymic suspensions prepared by mechanical processing and collagenase digestion were treated with EDTA. Light density cells were then collected by centrifugation and non-DC lineage cells depleted using magnetic beads coupled to anti-rat-IgG after coating them with rat anti-mouse anti-CD3, anti-CD90, anti-TER119, anti-RB68C5, anti-CD19, anti-CD11b, and anti-F4/80. For conventional DC isolation, enriched preparations were stained with anti-CD11c-FITC, anti-CD8-PE, anti-CD45RA-APC, and anti–Sirpα-biotin plus SA-PE-Cy7. Conventional DCs with high forward scatter and bright staining for CD11c were then separated into CD8+Sirpα+ and CD8+Sirpα- populations. The purity of the sorted DC was >98%.

Quantitative RT-PCR. Total RNA was extracted from sorted thymic and splenic CD4+ CD4+CD25+ and CD4+CD25- T cells using TRI reagent (Sigma-Aldrich) according to the manufacturer’s specifications. Total RNA was DNase treated in 20 mM Tris, pH 8.3, 50 mM KCl, and 2 mM MgCl₂ using 1 U RNase-free DNase 1 (Roche) per 1 µg of total RNA at 37°C for 30 min, followed by heat inactivation at 75°C for 5 min. 0.2-1 µg DNase-treated total RNA was reverse transcribed using the first-strand complementary DNA (cDNA) synthesis system (OnGene) according to the manufacturer’s instructions. Quantitative real-time PCR was performed using an ABI PRISM 7500 or 7900HT sequence detection system (Applied Biosystems). Reactions were performed in MicroAmp Optical 96-well or 384-well reaction plates (Applied Biosystems) in a final volume of 20 or 10 µl, respectively, containing SYBR Green Master Mix (Applied Biosystems), 300 nM of forward and reverse primers, and 1/10-diluted cDNA, according to the manufacturer’s guidelines (Applied Biosystems). To normalize for experimental variation in cDNA synthesis and RNA input, PCRs for ubiquitin-conjugating enzyme (UBC) E2D2 were conducted in parallel. The primer pairs used are listed in Table S2.

Western blotting. Equal amounts of total cellular protein from FACs-purified populations of thymocytes (CD4+CD8-, CD8+CD4-), CD4+CD25+, and CD4+CD25-) and splenic T cells (CD4+CD25+ and CD4+CD25-) were loaded on 10% Novex gels (Invitrogen) and then subjected to
electrophoresis and Western blotting, performed as previously described (Banerjee et al., 2006) using RelA and c-Rel–specific antibodies (Grumont and Gerondakis, 1994) or anti-Foxp3 antibodies. Blots were stripped and reprobed with anti–β-actin antibodies. Western blots on nuclear and cytoplasmic extracts, prepared as previously described (Grumont and Gerondakis, 1994), were conducted as described earlier in this section and probed with antibodies to c-Rel, after which the blots were stripped and reprobed with anti-Erk (Santa Cruz Biotechnology, Inc.) or histone H3–specific antibodies (Santa Cruz Biotechnology, Inc.).

TGF-β–induced T reg cell differentiation in culture. Purified wt or c-rel−/− CD4+CD25+ splenic T cells (2 × 10^5) were cultured with 1 µg/ml of plate bound anti-CD3 antibody plus 2 × 10^5 irradiated T cell–depleted splenocytes in the presence or absence of 2 ng/ml of recombinant human TGF-β (R&D Systems) for 4 d. Cells were then harvested and T reg cell quantified by staining for Foxp3 expression. The effect of exogenous IL-2 on TGF-β–dependent T reg cell conversion was determined by adding 50 U/ml of recombinant murine IL-2 (PeproTech) on D0 and D2 of the 4-d incubation. To assess the proliferation of TGF-β–converted cells, 5 × 10^4 CD4+CD25− T cells were cultured with anti-CD3 antibodies, 5 × 10^5 irradiated T cell–depleted splenocytes, and IL-2 in the presence or absence of TGF-β for 3 d and cultures pulsed with 1 µCi of [H] thymidine for the final 8 h of culture. Incorporated radioactivity was measured by scintillation counting.

T reg cell conversion in vivo. CD4+CD25− splenic T cells (>96% purity) isolated by flow cytometry from wt (C57BL/6, Ly5.1+ and Ly5.2+) and c-rel−/− (Ly5.2+) mice were mixed at a 1:1 ratio, and 5 × 10^6 cells from mixtures of either wt (Ly5.1+) or c-rel−/− (Ly5.1+) or wt (Ly5.2+) and c-rel−/− (Ly5.2+) CD4+CD25+ T cells were injected intravenously into rag-1−/− mice. 18 d later, cell suspensions from the spleen and mesenteric lymph nodes of individual mice were stained with anti–CD4-APC, anti–CD8-PerCP, anti–CD45.1-PE, and either anti–CD25-FITC or anti–FoxP3-FITC. Stained cells were analyzed using a FACSCalibur and the data analyzed using FlowJo software (Tree Star, Inc.).

T reg cell homeostatic proliferation. CD4+CD25+ splenic T cells (>90% Foxp3+) purified by flow cytometry from wt (C57BL/6, Ly5.1+ and Ly5.2+) and c-rel−/− (Ly5.2+) mice were mixed in equal numbers (1:1 ratio) and 5 × 10^6 cells from mixtures of either wt (Ly5.1+ and Ly5.2+) or wt (Ly5.1+) and c-rel−/− (Ly5.2+) CD4+CD25+ T cells were injected intravenously into rag-1−/− mice. Between 4 and 8 wk later, cell suspensions from the spleens and mesenteric lymph nodes of individual mice were stained with anti–CD4-PerCP, anti–CD8-PE, anti–CD45.1-APC, and anti–Foxp3-FITC antibodies. Stained cells were analyzed using a FACSCalibur and the data analyzed using FlowJo software.

Infected T cells with Foxp3-expressing retroviruses. A full-length cDNA clone encoding mouse Foxp3 (provided by S. Barry, Child Health Research Institute, Adelaide, Australia) was inserted into the pMY-EGFP retroviral vector (Grumont et al., 2004), and stocks of control (MY-EGFP) or MY-EGFP/Foxp3 virus were generated by transfecting Phoenix cells. Purified CD4+CD25− T cells activated in culture with anti–CD3 antibodies plus IL-2 (50 U/ml) were infected with MY-EGFP or MY-EGFP/Foxp3 virus using a spin infection procedure (Grumont et al., 2004). After two rounds of infection, ~20–30% of cultured cells were GFP positive.

In vitro suppression assay. Purified wt CD4+CD25− T cells (2.5 × 10^6) together with varying ratios of wt or c-rel−/− splenic CD4+CD25+ T cells were activated with 1 µg/ml anti-CD3 mAb (145-2C11) in the presence of 10^5 irradiated (3,000 Rad) T cell–depleted splenocytes in 96-well round bottom plates for 72 h. These assays were also performed using either TGF-β–converted T reg cells or CD4+CD25+ T cells generated by infecting wt or c-rel−/− CD4+CD25+ T cells with a retrovirus expression Foxp3. All cultures were pulsed with 1 µCi of [H] thymidine for the final 8 h of incubation and then analyzed by scintillation counting.

In vivo suppression of experimentally induced colitis. The induction of experimental colitis was performed as previously described (Asseman et al., 1999). In brief, 4 × 10^6 wt CD4+CD45RB− cells were delivered by intravenous injection (200 µl) into rag-1−/− mice with or without 10^5 CD4+CD25+ splenic T cells isolated from wt or c-rel−/− mice. All animals were sacrificed 10 wk after the transfer of cells, with those mice that lost >10% of their initial body weight or were ill sacrificed before. Colonos were fixed with 10% formalin solution and stained with hematoxylin and eosin. Histological scoring was done in a blind fashion according to the colitis severity index (epithelial hyperplasia, 0–3; cellular infiltrate, 0–3; cryptic abscess, 0–1) as previously described (Berg et al., 1996).

Online supplemental material. Fig. S1 shows c-Rel expression in nuclear and cytoplasmic fractions of resting and activated B cells. Fig. S2 shows cultured CD4+ and T reg cell numbers after TGF-β (with or without IL-2 treatment). Fig. S3 shows that TCR–activated c-rel−/− T cells demonstrate diminished proliferation after TGF-β treatment. Fig. S4 shows T reg cell conversion in vivo. Fig. S5 shows Foxp3 expression in populations of purified peripheral T reg cells and converted CD4+CD25+ T cells. Fig. S6 shows T reg cell control of antigen-specific effector T cell proliferation in c-rel−/− mice. Table S1 shows the numbers of CD4+CD25+, CD4+CD25+Foxp3+ cells, and CD4+CD25+Foxp3− cells in the thymus and spleen of 2-, 5-, and 28-d-old wt and c-rel−/− mice. Table S2 shows sequences of the primers used for determining quantitative real-time PCR analysis of gene expression in wt and c-rel−/− CD4+CD25− and CD4+CD25− thyocytes and splenic T cells. Online supplemental material is available at http://www.jem.org/cgi/content/full/jem.20091411/D1C1.

The authors thank I. Adams for the Bcl-2 transgenic mice, Lina Ma for expert technical assistance, and Drs. Kristine Hardy and Stephen Daley for useful discussions.

This work was supported by a Program grant from the Leukemia and Lymphoma Society (SCOR grant 7015) and grants from the National Health and Medical Research Council of Australia (Program 257502 and Project 543141).

The authors have no conflicting financial interests.

Submitted: 29 June 2009 Accepted: 30 October 2009

REFERENCES

Published December 7, 2009

Downloaded from jem.rupress.org on December 10, 2009

13 of 14

Figure S1. c-Rel expression in nuclear and cytoplasmic fractions of resting and activated B cells. Cytoplasmic and nuclear fractions from equivalent numbers (3 \times 10^6) of purified resting or anti-IgM (25 µg/ml)-activated (60 min) B cell cultures were subjected to Western blot analysis and probed with c-Rel-specific antibodies as described in Materials and methods. c-Rel levels in whole cell extracts (2 \times 10^6) of untreated and activated B cells from these culture is also shown. The data are representative of two independent experiments.

Figure S2. Cultured CD4+ and T reg cell numbers after TGF-β (with or without IL-2) treatment. 4 d after stimulating wt or c-rel−/− CD4+CD25− T cells with anti-CD3 antibodies and irradiated T cell–depleted APC in the absence or presence of TGF-β (with or without IL-2) total numbers of CD4+ T cells and T reg cells (Foxp3+) were quantified by flow cytometry. The data represents the standard error of the mean for four independent experiments. In each independent experiment, there were three replicate cultures of wt and c-rel−/− cells for every type of stimulation.

Figure S3. TCR-activated c-rel−/− T cells demonstrate diminished proliferation after TGF-β treatment. wt or c-rel−/− CD4+CD25− T cells were stimulated for 4 d in culture with anti-CD3 antibodies and irradiated T cell–depleted APC in the absence or presence of TGF-β (with or without IL-2). Cultures were pulsed with 1 µCi [3H]thymidine for the final 8 h of culture, after which cells were harvested and incorporated radioactive thymidine was determined. The data represents the standard error of the mean for four independent experiments. In each independent experiment, there were three replicate cultures of wt and c-rel−/− cells for every type of stimulation.
Figure S4. T reg cell conversion in vivo. Mesenteric lymph node cells isolated from rag-1−/− mice injected 18 d earlier with either a 1:1 mix of purified splenic CD4+CD25− wt (Ly5.1+ and Ly5.2+) or wt (Ly5.1+) and c-rel−/− (Ly5.2+) T cells were stained with antibodies specific for CD4, CD8, CD45.1 (Ly5.1) and Foxp3. The data compares the percentages of wt (Ly5.1+ and Ly5.2+, squares and circles, respectively) and c-rel−/− (Ly5.2+, triangles) CD4+Foxp3+ cells detected in the mesenteric lymph nodes of individual mice receiving each mixture of cells. The data were analyzed using a paired T test and is representative of two independent experiments, with a minimum of five mice in each recipient group. Horizontal bars represent the mean values of the data. Error bars represent SD.

Figure S5. Foxp3 expression in populations of purified peripheral nT reg cells and converted CD4+CD25− T cells. (A) Purified wt and c-rel−/− populations of splenic CD4+CD25− T cells were stained for Foxp3 expression. Representative purity of the sorted populations and the levels of Foxp3 expression are shown. The data are representative of six independent experiments. (B) Typical purity in GFP+ populations of wt and c-rel−/− CD4+CD25− T cells transduced with Foxp3/GFP retrovirus. Western blotting demonstrates Foxp3 expression in these populations. The data are representative of four independent experiments. (C) Purity of FACS-purified wt and c-rel−/− CD4+CD25− T cells generated in culture by TGF-β plus IL-2 stimulation. Foxp3 expression in these populations is also shown. The data are representative of four independent experiments.
Figure S6. T reg cell control of antigen-specific effector T cell proliferation in c-rel−/− mice. (A) Anti-CD25 antibody depletion of T reg cells augments the antigen-induced proliferation of CD8+ OT-I transgenic T cells. 2 × 10^6 purified CD8+ splenic and lymph node T cells (Vα2+) from CD45.1+ OT-I mice were injected into wt mice that were either untreated (six mice) or pretreated with four 1-mg doses of anti-CD25 mAb per mouse (five mice) delivered over a 9-d period. At the time of cell transfer, each mouse was immunized with a combination of OVA/QuilA (100 µg OVA and 20 µg QuilA; Steptoe et al. 2007. J. Immunol. 178:2094–2103). 7 d later, the number of CD45.1+Vα2+ CD8+ T cells, plus the frequency of CD25+Foxp3+ T cells (as a percentage of CD4+ cells) in the draining inguinal lymph nodes of mice were determined using a flow cytometry bead assay [Steptoe et al. 2007. J. Immunol. 178:2094–2103]. The data are representative of two independent experiments. (B) Residual T reg cell numbers in c-rel−/− mice limit the OVA-dependent expansion of OT-I CD8+ T cells. wt and c-rel−/− mice (both CD45.2+) injected with equal numbers [2 × 10^6] of Vα2+OT-I CD8+ T cells purified from the spleen and lymph node were immunized with OVA/QuilA and then, 7 d later, inguinal lymph node CD45.1+Vα2+CD8+ and CD4+CD25+Foxp3+ T cells were quantified as described in A. The data obtained from individual mice in this experiment is representative of two independent experiments. In both experiments, six wt and six c-rel−/− mice were used in each experimental group. Horizontal bars represent the mean values of the data.
Table S1. Numbers of CD4⁺CD25⁺, CD4⁺CD25⁺Foxp3⁺, and CD4⁺CD25⁻Foxp3⁺ cells in the thymus and spleen of 2-, 5-, and 28-d-old wt and c-rel⁻/⁻ mice

<table>
<thead>
<tr>
<th>Cell type and day</th>
<th>Cell type and day</th>
<th>Thymus</th>
<th>Spleen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>WT</td>
<td>c-Rel⁻/⁻</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mean</td>
<td>SEM</td>
</tr>
<tr>
<td>CD4SP CD25⁺</td>
<td></td>
<td>D2</td>
<td>23,010</td>
</tr>
<tr>
<td></td>
<td></td>
<td>D5</td>
<td>22,860</td>
</tr>
<tr>
<td></td>
<td></td>
<td>D28</td>
<td>259,702</td>
</tr>
<tr>
<td>CD4SP CD25⁺Foxp3⁺</td>
<td></td>
<td>D2</td>
<td>576</td>
</tr>
<tr>
<td></td>
<td></td>
<td>D5</td>
<td>3,260</td>
</tr>
<tr>
<td></td>
<td></td>
<td>D28</td>
<td>102,234</td>
</tr>
<tr>
<td>CD4SP CD25⁻Foxp3⁺</td>
<td></td>
<td>D2</td>
<td>934</td>
</tr>
<tr>
<td></td>
<td></td>
<td>D5</td>
<td>3,599</td>
</tr>
<tr>
<td></td>
<td></td>
<td>D28</td>
<td>96,504</td>
</tr>
</tbody>
</table>

Mean refers to the mean numbers of CD4⁺CD25⁺, CD4⁺CD25⁺Foxp3⁺, and CD4⁺CD25⁻Foxp3⁺ thymocytes and splenic T cells (± SEM) in 2-, 5-, and 28-d-old wt and c-rel⁻/⁻ mice. The data were compiled in two independent experiments from a total of n = 10–20 for D2 and D5 samples and n = 5 for D28 samples.
Table S2. Sequences of the primers used for determining quantitative real-time PCR analysis of gene expression in wt and c-rel^{−/−} CD4⁺CD25[−] and CD4⁺CD25⁺ thymocytes and splenic T cells

<table>
<thead>
<tr>
<th>Name</th>
<th>Primer sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>mUBC forward</td>
<td>5′-AGAGAAATCCACAAGGAAATTGAATG-3′</td>
</tr>
<tr>
<td>mUBC reverse</td>
<td>5′-CAACAGGACCTGTCGAACACTG-3′</td>
</tr>
<tr>
<td>mFoxp3 forward</td>
<td>5′-GGCCCTTCACAGGACAG-3′</td>
</tr>
<tr>
<td>mFoxp3 reverse</td>
<td>5′-GCTGATCATGCTGCTGTTG-3′</td>
</tr>
<tr>
<td>mCD25 forward</td>
<td>5′-AGGTCAGACAGAGCCATTTTGAGT-3′</td>
</tr>
<tr>
<td>mCD25 reverse</td>
<td>5′-CCGTGTCCCACAAAGGATATATT-3′</td>
</tr>
<tr>
<td>mIL-2 forward</td>
<td>5′-GCTGATCATGCTGCTGTTG-3′</td>
</tr>
<tr>
<td>mIL-2 reverse</td>
<td>5′-GCTGATCATGCTGCTGTTG-3′</td>
</tr>
<tr>
<td>mGITR forward</td>
<td>5′-GCTGATCATGCTGCTGTTG-3′</td>
</tr>
<tr>
<td>mGITR reverse</td>
<td>5′-GCTGATCATGCTGCTGTTG-3′</td>
</tr>
<tr>
<td>mCD40L forward</td>
<td>5′-GCTGATCATGCTGCTGTTG-3′</td>
</tr>
<tr>
<td>mCD40L reverse</td>
<td>5′-GCTGATCATGCTGCTGTTG-3′</td>
</tr>
<tr>
<td>mCD39 forward</td>
<td>5′-GCTGATCATGCTGCTGTTG-3′</td>
</tr>
<tr>
<td>mCD39 reverse</td>
<td>5′-GCTGATCATGCTGCTGTTG-3′</td>
</tr>
<tr>
<td>mCD73 forward</td>
<td>5′-GCTGATCATGCTGCTGTTG-3′</td>
</tr>
<tr>
<td>mCD73 reverse</td>
<td>5′-GCTGATCATGCTGCTGTTG-3′</td>
</tr>
<tr>
<td>mOX40 forward</td>
<td>5′-GCTGATCATGCTGCTGTTG-3′</td>
</tr>
<tr>
<td>mOX40 reverse</td>
<td>5′-GCTGATCATGCTGCTGTTG-3′</td>
</tr>
<tr>
<td>m41BB forward</td>
<td>5′-GCTGATCATGCTGCTGTTG-3′</td>
</tr>
<tr>
<td>m41BB reverse</td>
<td>5′-GCTGATCATGCTGCTGTTG-3′</td>
</tr>
<tr>
<td>mMAP3K9 forward</td>
<td>5′-GCTGATCATGCTGCTGTTG-3′</td>
</tr>
<tr>
<td>mMAP3K9 reverse</td>
<td>5′-GCTGATCATGCTGCTGTTG-3′</td>
</tr>
<tr>
<td>mCREM forward</td>
<td>5′-GCTGATCATGCTGCTGTTG-3′</td>
</tr>
<tr>
<td>mCREM reverse</td>
<td>5′-GCTGATCATGCTGCTGTTG-3′</td>
</tr>
<tr>
<td>mZEB1 forward</td>
<td>5′-GCTGATCATGCTGCTGTTG-3′</td>
</tr>
<tr>
<td>mZEB1 reverse</td>
<td>5′-GCTGATCATGCTGCTGTTG-3′</td>
</tr>
<tr>
<td>mld1 forward</td>
<td>5′-GCTGATCATGCTGCTGTTG-3′</td>
</tr>
<tr>
<td>mld1 reverse</td>
<td>5′-GCTGATCATGCTGCTGTTG-3′</td>
</tr>
</tbody>
</table>
Table S2. Sequences of the primers used for determining quantitative real-time PCR analysis of gene expression in wt and c-rel−/− CD4+CD25− and CD4+CD25+ thymocytes and splenic T cells (Continued)

<table>
<thead>
<tr>
<th>Name</th>
<th>Primer sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>mbcl2/1 forward</td>
<td>5′-CCAGAAGACTGACAGCCTGA</td>
</tr>
<tr>
<td>mbcl2/1 reverse</td>
<td>5′-TGTAGGGTGAGGGGAGAGGA</td>
</tr>
<tr>
<td>mbcl2 forward</td>
<td>5′-TCTCGTCGCTACCGGTG</td>
</tr>
<tr>
<td>mbcl2 reverse</td>
<td>5′-AAGAGTTCCTCCACACCGTG</td>
</tr>
<tr>
<td>mcrel forward</td>
<td>5′-TACCAGAAAATGCCCAGGTC</td>
</tr>
<tr>
<td>mcrel reverse</td>
<td>5′-AGGCCCTTCTAGGAATTGGA</td>
</tr>
<tr>
<td>mrela forward</td>
<td>5′-TCCCCAATGGCTCTCAGAGA</td>
</tr>
<tr>
<td>mrela reverse</td>
<td>5′-GTCGCTGTACGCACCTAGGA</td>
</tr>
<tr>
<td>mNF-κB1 forward</td>
<td>5′-TCTAGCAATCATGGCGCTCG</td>
</tr>
<tr>
<td>mNF-κB1 reverse</td>
<td>5′-CAACACAAAAGCAATGTGATCCAG</td>
</tr>
</tbody>
</table>