Proteomic analysis of Plasmodium falciparum histone deacetylase 1 complex proteins

Jessica A. Engel
Emma L. Norris
Paul Gilson
Jude Przyborski
Addmore Shonhai

See next page for additional authors
Authors

This article is available at ResearchOnline@ND: https://researchonline.nd.edu.au/health_article/254
Proteomic analysis of *Plasmodium falciparum* histone deacetylase 1 complex proteins

Running title: Investigation of *Py*HDAC1 complex proteins

Jessica A Engel¹, Emma L Norris², Paul Gilson³, Jude Przyborski¹, Addmore Shonhai⁵, Gregory L Blatch⁶, Tina S Skinner-Adams¹, Jeffrey Gorman²⁎, Madeleine Headlam²⁎ and Katherine T Andrews¹#⁎

¹Griffith Institute for Drug Discovery, Griffith University, Queensland, Australia

²QIMR Berghofer Medical Research Institute, Queensland, Australia

³Burnet Institute, Monash University, Victoria, Australia

⁴Centre of Infectious Diseases, Parasitology, University Hospital Heidelberg, Germany

⁵Biochemistry Department, University of Venda, Thohoyandou, South Africa

⁶The Vice Chancellery, University of Notre Dame Australia, Fremantle, WA, Australia

⁎Co-senior authors

# Corresponding author:

Professor KT Andrews, Griffith Institute for Drug Discovery, Don Young Road, Building N.75 Griffith University, Nathan, Queensland, Australia 4111; Ph ++61(0)7 3735 4420; Fax ++61(0)7 3735 6001; k.andrews@griffith.edu.au
Abstract

Plasmodium falciparum histone deacetylases (PfHDACs) are an important class of epigenetic regulators that alter protein lysine acetylation, contributing to regulation of gene expression and normal parasite growth and development. PfHDACs are therefore under investigation as drug targets for malaria. Despite this, our understanding of the biological roles of these enzymes is only just beginning to emerge. In higher eukaryotes, HDACs function as part of multi-protein complexes and act on both histone and non-histone substrates. Here, we present a proteomics analysis of PfHDAC1 immunoprecipitates, identifying 26 putative P. falciparum complex proteins in trophozoite-stage asexual intraerythrocytic parasites. The co-migration of two of these (P. falciparum heat shock proteins 70-1 and 90) with PfHDAC1 was validated using Blue Native PAGE combined with Western blot. These data provide a snapshot of possible PfHDAC1 interactions and a starting point for future studies focused on elucidating the broader function of PfHDACs in Plasmodium parasites.

Keywords: Plasmodium falciparum; malaria; histone deacetylase; immunoprecipitation; mass spectrometry; heat shock protein;
1. Introduction

Malaria causes substantial morbidity and mortality with 3.2 billion people at risk of infection globally. This results in more than 400,000 deaths each year, most due to infection with *Plasmodium falciparum* (WHO 2017). While the use of insecticide-treated bed nets, insecticide spraying, and the availability of drugs, including the gold standard artemisinin combination therapies (ACTs), has been responsible for a ~50% reduction in malaria-associated deaths since 2000 (WHO 2017), malaria remains a serious health problem. A number of limitations still need to be overcome in order to achieve the global goal of malaria eradication. For instance, there is no highly effective malaria vaccine available, with the most advanced candidate (RTS,S) being only 30-40% effective in African children in phase III clinical trials (RTS 2015, RTS et al. 2012, RTS et al. 2011). In addition, almost all current antimalarial drugs, including ACTs, are now associated with resistance (Dondorp et al. 2010, Dondorp et al. 2009, WHO 2016). The potential loss of ACTs globally would be devastating (Burrows et al. 2014, malERA Consultative Group on Drugs 2011) and is driving discovery of new prevention and treatment strategies. An important part of the drug discovery process is understanding the biology of *Plasmodium* and the identification and validation of novel drug targets.

*Plasmodium* parasites undergo a number of developmental changes throughout their lifecycle that are governed by a tightly regulated cascade of gene expression (Bozdech et al. 2003). Epigenetic regulatory proteins, such as histone deacetylases (HDACs; also called lysine deacetylases), appear to play a key role in the regulation of this developmental cascade (Andrews et al. 2012, Chaal et al. 2010, Duraisingh and Horn 2016). HDACs, together with histone acetyltransferases (HATs), are involved in the reversible acetylation of histone and non-histone proteins in higher eukaryotes and the interplay between these two groups of enzymes results in changes to chromatin structure, gene expression and other cellular processes (Shahbazian and Grunstein 2007). As changes or mutations in human HDACs can contribute
to certain diseases such as cancer, there is increasing interest in therapeutic development of HDAC inhibitors (Cress and Seto 2000, Yang 2004), with some already clinically approved for various cancers (Garnock-Jones 2015, Grant et al. 2007, Prince and Dickinson 2012, Shi et al. 2015, Thompson 2014). HDACs are also showing promise as drug targets for several parasitic diseases, including malaria (Andrews et al. 2012, Andrews et al. 2012). Five HDAC homologues have been identified in the *P. falciparum* genome, fewer than in human cells where 18 HDACs are present (de Ruijter et al. 2003). HDACs can be grouped into four classes depending on their homology to a prototypical HDAC in yeast, co-factor dependency and subcellular localisation (de Ruijter et al. 2003, Haberland et al. 2009, Mariadason 2008). Class I HDACs are closely related to the transcriptional regulator RPD3 in the yeast *Saccharomyces cerevisiae*, whereas class II HDACs are related to the yeast HDA1 protein (de Ruijter et al. 2003, Gao et al. 2002). Class I and II HDACs are dependent on zinc as a co-factor for deacetylase activity (Mariadason 2008), while class III HDACs, also known as the silent information regulator 2 (Sir2)-related protein (sirtuin) HDAC family, are dependent on nicotinamide adenosine dinucleotide (NAD+) as a co-factor and are homologous to the yeast Sir2 gene (Gao et al. 2002, Mariadason 2008). *P. falciparum* HDAC (*Pf*HDAC) homologues are predicted to have homology to three human HDAC classes; class I (*Pf*HDAC1), class II (*Pf*HDAC2 and *Pf*HDAC3) and class III (*Pf*Sir2A and *Pf*Sir2B) (Andrews et al. 2012, Andrews et al. 2009, Horrocks et al. 2009). In *P. falciparum*, neither *Pf*Sir2A nor *Pf*Sir2B is essential in asexual intraerythrocytic stage parasites *in vitro*, but may play a role in parasite virulence (Duraisingh et al. 2005, Tonkin et al. 2009). The class I and II HDAC homologues are believed to be essential in the parasite (Coleman et al. 2014), making them potential antimalarial drug targets.

While it is known that HDACs from higher eukaryotes act as part of multi-protein complexes (de Ruijter et al. 2003, Kelly and Cowley 2013, Sengupta and Seto 2004), these complexes
have only been hypothesised via *in silico* analyses in *P. falciparum*, with no supporting experimental data (Goyal et al. 2012, Hernandez-Rivas et al. 2010, Horrocks et al. 2009, Merrick and Duraisingh 2007, Pallavi et al. 2010). Of the three class I and II *P. falciparum* HDAC homologues, only *Pf*HDAC1 has been functionally expressed *in vitro* (Patel et al. 2009), however nothing is known about its *in situ* function, including any dependence on accessory/complex proteins. Identifying *Pf*HDAC1 complex proteins could help elucidate the molecular function of this protein and also identify possible new drug targets in the form of non-histone substrates or proteins essential for *Pf*HDAC1 function. In this study, *Pf*HDAC1 was immunoprecipitated from native *P. falciparum* 3D7 protein lysates using an antibody raised against a C-terminal peptide of *Pf*HDAC1 and a proteomics analysis carried out in order to identify putative complex partners or substrates.

2. Materials and Methods

2.1 *Pf*HDAC1 antibody generation

Anti-*Pf*HDAC1 rabbit polyclonal antiserum was custom made (Innovative Veterinary Management System, Australia) against keyhole limpet hemocyanin-conjugated *Pf*HDAC1 C-terminal peptide RRKNYDDDFFDLSRDQS (Mimotopes, Australia), using a previously reported peptide sequence (Joshi et al. 1999). Anti-*Pf*HDAC1 antibody was purified from sera using a Pierce™ Protein A Purification Kit (Thermo Fisher Scientific, Germany) and diluted in 50% glycerol prior to storage at -20°C.

2.2 *P. falciparum* protein lysate preparation

Synchronous *P. falciparum* 3D7 trophozoite-infected erythrocytes (5% hematocrit; 3-5% parasitemia) were pelleted by centrifugation and lysed with 0.15% saponin/phosphate buffered saline pH 7.4 (PBS). The resulting parasite pellet was washed extensively with PBS before
being resuspended in 10 volumes 1% Triton X-100/PBS containing cOmplete™ EDTA-free protease inhibitors (Roche, Germany). Following 30 min incubation on ice, with vortexing every 5 min, samples were centrifuged at 21,130 \( \times \) g for 10 min at 4°C. Soluble protein in the supernatant was quantified using a Bradford Protein Assay kit (Bio-Rad, USA). Red blood cell control protein lysates were prepared as above with equivalent numbers of uninfected erythrocytes.

2.3 Immunoprecipitation and Western blot analysis

Indirect immunoprecipitation with anti-\( P/J\)HDAC1 antibody was carried out using a Dynabeads® Protein G Immunoprecipitation Kit (Life Technologies, USA) according to the manufacturer’s protocol. Controls included a protein negative (PROT-NEG), antibody negative (AB-NEG), or red blood cell protein lysate (RBC) sample. Four independent experiments were performed. A portion of each protein sample (0.25 eluate volume) was separated by SDS-PAGE, followed by Western blot using different antibodies. The remaining sample of each eluate (0.75 eluate volume) was used for mass spectrometry analysis, as detailed in Section 2.4.

Primary antibodies used for Western blot analysis were anti-\( P/J\)HDAC1 rabbit antibody (1:5000 dilution), anti-\( P/J\)Hsp90 rabbit antibody (1:1000 dilution; Supplementary Figure 1; (Gitau et al. 2012)) and anti-\( P/J\)Hsp70-1 rabbit antibody (1:2000 dilution; Supplementary Figure 1; (Charnaud et al. 2017)). Anti-rabbit IgG light chain HRP mouse monoclonal SB62a secondary antibody (1:2000 dilution; Abcam, UK) was used for chemiluminescence detection on a VersaDoc 4000MP imaging system (Bio-Rad, USA). Secondary antibodies for fluorescence detection on an Odyssey FC (LI-COR Biosciences, USA) were anti-rabbit IRDye 800CW or anti-rabbit IRDye 680RD (LI-COR Biosciences, USA).

2.4 Protein reduction/alkylation and trypsin digestion
Samples were prepared for mass spectrometry analysis, as previously described (Hastie et al. 2012). Briefly, the samples were denatured with SDS, reduced with dithiothreitol, alkylated using iodoacetamide (IAA), and precipitated with 2 µl trypsin (0.5 µg/µl stock). The digested samples were then prepared for mass spectrometry analysis by acidification with formic acid (FA) at a 1% (v/v) final concentration.

2.5 Orbitrap mass spectrometry

The mass spectrometry experimental procedure used in this study was similar to that previously described (Dave et al. 2014). Tryptic digests were fractionated using a nanoAquity Ultra High Performance Liquid Chromatograph (nUHPLC; Waters, USA) with column equilibrated to 35°C. The digests were loaded onto a Symmetry C18 100 Å, 180 µm x 20 mm trap (Waters, MA, USA) and washed at 15 µl/min in 1% acetonitrile containing 0.1% (v/v) formic acid for 3 min. Peptides were separated using a Peptide BEH C18 130 Å, 75 µm x 200 mm C18 column (Waters, MA, USA) at 35°C using various gradients dependent on the samples analysed. A 90 min gradient and 1 µl injection volume was used for all samples originating from immunoprecipitations. Peptides were then analysed using an Orbitrap Velos Pro Mass Spectrometer. An electrospray ionisation source (Proxeon, Denmark) with a 10 µm inner diameter coated silica emitter (New Objective) introduced eluates from the separation column into an LTQ-Orbitrap Velos Pro (Thermo Fisher Scientific, Germany), which was controlled using Xcalibur 2.0 software (Thermo Fisher Scientific, Germany). The mass spectrometer was operated in a data-dependent mode to automatically switch between Orbitrap-MS and collision induced dissociated ion trap-MS/MS acquisition. Orbitrap resolution was set to 60,000 at m/z 400 and injection time was set to 200 ms and the top 15 MS peaks were fragmented and analysed by MS/MS per duty cycle.

2.6 Protein identification, quantification and functional annotation
Thermo Proteome Discoverer version 1.4.1.14 (Thermo Fisher Scientific, Germany) was used to extract peak lists from Xcalibur raw files (parent ions in the mass range of 300-5000 m/z, signal:noise ratio of 1.5). To identify human and *P. falciparum* proteins, Mascot version 2.5.1 (Matrix Science, UK) was used to search a concatenated database consisting of the complete proteome sets for *H. sapiens* (73,540 canonical protein sequences downloaded from www.uniprot.org on 7 December 2016) and *P. falciparum* 3D7 (5,548 protein sequences downloaded from www.plasmodb.org on 7 December 2016). For the Mascot searches, the fragment ion and parent ion mass tolerances were set to 0.8 Da and 20 ppm, respectively. Other search parameters were trypsin enzyme digestion, a maximum of two missed cleavages, and carboxymethylation of cysteine was specified as a fixed modification. Protein N-terminal acetylation, deamidation of asparagine/glutamine and methionine oxidation were specified as variable modifications.

Scaffold™ version 4.5.3 (Proteome Software, USA) (Searle 2010) was used to validate and quantify MS/MS-based peptide and protein identifications. Peptide identifications were accepted if they were assigned a probability greater than 0.95 by the Scaffold legacy Peptide Prophet algorithm (Keller et al. 2002). Protein identifications were accepted if they were assigned a probability greater than 0.99 and contained at least two identified peptides. Protein probabilities were assigned by the Protein Prophet algorithm (Nesvizhskii et al. 2003). Proteins that contained similar peptides and could not be differentiated based on identified peptides alone were grouped to satisfy the principles of parsimony.

Relative protein quantification was performed by spectral counting (Liu et al. 2004) using the Scaffold reported exclusive spectrum counts. Protein groups quantified in at least three out of four positive (*Pf3D7*) replicate samples were retained for statistical analysis. Statistical analysis between the positive (*Pf3D7-E*) and negative (AB-NEG-E) replicate samples was carried out.
using a beta-binomial test (Pham et al. 2010), where the total sample counts were set to the same value for all replicates (i.e., set to the average replicate total). The relative abundance of proteins in the Pf3D7 immunoprecipitations compared to the AB-NEG-E was estimated as a log₂ fold-change calculated using \( \log_2(\text{Avg}(Pf3D7-E) + 1) - \log_2(\text{Avg}(AB-NEG-E) + 1) \); a count of one was added to the average to allow calculation of fold-changes for protein groups not observed in the AB-NEG-E control. A significance level of \( P \leq 0.01 \) and a fold-change greater than two (i.e., a log₂ fold-change greater than one) were applied to identify proteins that were enriched in the Pf3D7-E immunoprecipitation compared to the AB-NEG-E control.

Gene ontology (GO) annotations were downloaded from PlasmoDB (www.plasmodb.org on 20 January 2017; (Aurrecoechea et al. 2009)) and GOTermMapper (Boyle et al. 2004) for the proteins that were enriched in the Pf3D7 immunoprecipitation. The P. falciparum GeneDB GO Slim was used for GOTermMapper annotation.

2.7 Blue native polyacrylamide gel electrophoresis

Blue native polyacrylamide gel electrophoresis (BN PAGE) was carried out as previously described (Sessler et al. 2012), with the following modifications. Triton-X 100 (0.5%) detergent was used in the High Salt Lysis Buffer instead of 1% NP-40 and NativePAGE™ Novex® 3-12% Bis-Tris protein gels (Life Technologies, USA) were used for the separation of proteins. NativeMark™ unstained protein standard (Life Technologies, USA) was used as a molecular weight marker. Prior to Western blot, protein complexes were denatured by incubating the native gel in SDS PAGE Buffer (25 mM tris, 192 mM glycine, 0.1% SDS) for 10 min before transferring onto PVDF membrane (Merck Millipore, Germany). Second dimension SDS PAGE was performed as previously described (Elsworth et al. 2016) followed by colloidal Coomassie blue staining (Candiano et al. 2004) or Western blot analysis. For Western blot, membranes were probed sequentially following stripping in 25 mM glycine pH
2.0, 1% SDS and imaged on a VersaDoc 4000MP imaging system (Bio-Rad, USA) to confirm complete stripping. Image J 1.51d software was used to overlay Western blot images to determine co-localisation. For two dimensional BN PAGE/SDS PAGE, two colour Western blot analysis was carried out and membranes were subsequently imaged on an Odyssey Fc (LI-COR Biosciences, USA).

3. Results

3.1 Identification and functional annotation of PfHDAC1 complex proteins

Prior to mass spectrometry analysis, Western blot was carried out on P. falciparum 3D7 trophozoite-stage protein lysates immunoprecipitated using anti-PfHDAC1 antibody. A ~51 kDa protein, corresponding to the expected molecular mass of PfHDAC1, was detected in the Pf3D7 starting material and Pf3D7 eluates for each of the four independent replicates (Figure 1; Pf3D7 lane SM and E, respectively). A background signal/smear observed in Pf3D7 samples was also seen in the eluates for the protein negative control (PROT-NEG-E) and RBC control (RBC-E) and is consistent with secondary antibody cross-reactivity to the PfHDAC1 antibody heavy chain that is co-eluted with the target protein (Lal et al. 2005). Mass spectrometry analysis of immunoprecipitated material (Pf3D7-E and AB-NEG-E control) identified a total of 216 proteins, including 151 P. falciparum proteins and 65 human proteins (Supplementary File 1). Relative protein quantification was performed using spectral counting (Liu et al. 2004) and 135 proteins were quantified in the Pf3D7 immunoprecipitations (i.e. observed in at least three out of four replicate samples). To discriminate between candidate PfHDAC1-binders and non-specific background, the abundance of proteins in the Pf3D7 immunoprecipitations was compared to the AB-NEG-E control using a beta-binomial test. Twenty-nine proteins were significantly enriched (P<0.01; >2-fold difference) in the Pf3D7 immunoprecipitation (Table 1; Figure 2). This included PfHDAC1, 26 other P. falciparum proteins (Table 1) and two
Homo sapiens proteins (Supplementary File 1; highlighted in grey). The two human proteins, an uncharacterised protein (fragment; A0A0G2JRQ6) and immunoglobulin kappa variable 1-6 (fragment; IGKV1-6; A0A0C4DH72), both contain immunoglobulin-like domains (UniProt 2015) and are therefore most likely background signal from co-eluted antibody in the Pf3D7 eluate. As expected, PfHDAC1 (PF3D7_0925700) was significantly enriched and had one of the largest fold-differences in the Pf3D7-E immunoprecipitation compared to the AB-NEG-E control (P=7.1 x 10^{-5}, log₂ fold-change=2.75), along with PfHsp70-1 (PF3D7_0818900; P=2.1 x 10^{-5}; log₂ fold-change=1.62) and PfHsp110 (PF3D7_0708800; P=2.9 x 10^{-5}; log₂ fold-change=2.52) (Table 1; Figure 2). PfHsp90 (PF3D7_0708400) was also significantly enriched (P=1.4 x 10^{-3}; log₂ fold-change=1.10). Gene ontology annotations for the 26 candidate PfHDAC1 complex proteins (from PlasmoDB) spanned 25 biological processes (Figure 3 and Supplementary File 1). Eleven putative interactors were identified as having a role related to translation, the largest number of proteins in any one functional group.

3.2 Co-immunoprecipitation of putative PfHDAC1 complex proteins.

Using antibodies available to putative complex members PfHsp70-1 and PfHsp90, Western blot analysis was carried out on P. falciparum 3D7 protein lysates immunoprecipitated with anti-PfHDAC1 in order to confirm the immunoprecipitation-mass spectrometry data. As expected, the control Western blot with anti-PfHDAC1 antibody detected a ~51 kDa band corresponding to PfHDAC1 in the Pf3D7 starting material and Pf3D7 eluate samples (Supplementary Figure 2). This same blot was re-probed with anti-PfHsp70-1, which detected a band of the correct size of PfHsp70-1 (~74 kDa) in the starting material for the Pf3D7 and AB-NEG samples and in the Pf3D7 eluate, indicating that PfHsp70-1 co-immunoprecipitates with PfHDAC1 (Supplementary Figure 2). While anti-PfHsp90 detected
a weak signal of the correct size (~86 kDa) in the Pf3D7 starting material and AB-NEG samples, no signal was detected in the eluate material (not shown).

3.3 Investigation of PfHDAC1 protein interactions using BN PAGE analysis.

Blue native PAGE, which allows detection of protein complexes using native polyacrylamide gels (Camacho-Carvajal et al. 2004), was used in combination with Western blot to further investigate PfHDAC1 co-localisation with putative complex components in asexual stage *P. falciparum* 3D7 parasites. Anti-PfHDAC1 antibody resulted in prominent signals at ~200 kDa and ~480 kDa in late trophozoites (LT; Figure 4), with relatively little to no signal observed in the other developmental stages, whereas anti-PfHsp70-1 antibody resulted in prominent signals at ~200 kDa, ~300 kDa and ~440 kDa in all four developmental stages (Figure 4A; overexposed version shown in Supplementary Figure 3). Overlay of anti-PfHsp70-1 and anti-PfHDAC1 signals on the same membrane indicated possible co-migration of proteins at ~200 kDa in the LT sample (Figure 4A; Merge, arrow). Anti-PfHsp90 (Figure 4B) also detected signals at ~200 kDa, ~300 kDa and ~440 kDa in the LT sample. Overlay of anti-PfHsp90 with anti-PfHDAC1 signal indicates that PfHDAC1 and PfHsp90 putatively co-migrate at ~200 kDa in the LT sample (Figure 4B; merge, arrow). When signals for anti-PfHsp70-1 and anti-PfHsp90 were overlaid, putative co-migration for these proteins was observed at ~200 kDa, ~300 kDa and ~440 kDa in the LT sample (Figure 4C; merge, arrows), in line with complex sizes as previously identified in other studies for PfHsp70 and PfHsp90 (Banumathy et al. 2003, Pavithra et al. 2004).

3.4 Two dimensional BN PAGE / SDS PAGE analysis of *P. falciparum* protein lysates

To further elucidate co-localisation of candidate PfHDAC1 interacting proteins with PfHDAC1, protein complexes were separated by BN PAGE (Figure 5A), followed by
separation in a second dimension using SDS PAGE and colloidal Coomassie blue staining (Figure 5B) or Western blot analysis (Figure 5C). The two-dimensional Western blot analyses showed that PfHsp70-1 and PfHDAC1 putatively co-occur within two protein complexes (Figure 5C; panels i and ii) in P. falciparum 3D7 trophozoite-stage parasites. The protein identity of the lower molecular weight signal recognised by the anti-PfHDAC1 antibody at ~40kDa is unknown and further validation using mass spectrometry is needed to confirm whether this is a truncated form of PfHDAC1 or a cross-reacting protein species.

4. Discussion

HDACs are regulators of Plasmodium transcription and play a role in lifecycle progression and virulence gene expression (Andrews et al. 2012, Chaal et al. 2010, Duraisingh et al. 2005, Merrick et al. 2012, Tonkin et al. 2009). This, together with several studies demonstrating that certain HDAC inhibitors have potent in vitro activity against P. falciparum (IC₅₀ <200 nM) and parasite-specific selectivity (Selectivity Index >100) raises the possibility of developing HDAC inhibitors as drug leads for malaria (Andrews et al. 2012, Chen et al. 2008, Hansen et al. 2014, Patel et al. 2009, Patil et al. 2010). Therefore, gaining a better understanding of the role that these proteins play in Plasmodium may lead to new insights to help facilitate research in this area. In addition, identifying PfHDAC complex proteins may not only yield new mechanistic insights but could potentially identify new pathways associated with HDAC action/function that could be therapeutic targets in the future.

In this study, PfHDAC1 immunoprecipitation combined with mass spectrometry analysis identified 26 putative PfHDAC1 complex proteins in P. falciparum 3D7 trophozoite-stage parasites (Table 1). In addition, and validating the immunoprecipitation, PfHDAC1 was also one of the top significantly enriched proteins present in the Pf3D7 immunoprecipitated material (Table 1; P=7 x 10⁻⁵). In the context of the discussion below, it is important to remember that
the candidate *Pf*HDAC1 complex proteins identified in this study are likely to represent only a
“snapshot” of the “*Pf*HDAC1 interactome”, based on the experimental conditions used. *Pf*HDAC1 protein interactions are likely to be dynamic and transient as a result of the highly regulated cascade of gene expression that occurs across the asexual intraerythrocytic developmental cycle (Bozdech et al. 2003, Le Roch et al. 2003). In addition, some proteins identified may not necessarily be direct interactors of *Pf*HDAC1, but rather part of immunoprecipitated complexes.

Gene ontology annotations of the 26 *Pf*HDAC1 co-precipitated proteins span processes including translation, protein folding, glycolysis and others (*Figure 3*), indicating the potential diverse roles that *Pf*HDAC1 may play within the parasite, either directly or indirectly. When the proteins were annotated using broader, high-level GO biological process terms (Boyle et al. 2004, Princeton University) ten had the annotation “translation” (GO:0006412), including eight ribosomal proteins, elongation factor 2 (*PF3D7_1451100*) and asparagine-tRNA ligase (*PF3D7_0211800*) (*Supplementary Table 1* and 2). Ribosomal proteins are often identified in *P. falciparum* immunoprecipitations (Dorin-Semblat et al. 2015, Russo et al. 2010) and so it is possible they may be non-specific interactors. However, there is evidence of HDAC association with ribosomal proteins. For example, human HDAC6 has been shown to be recruited to ribosomes and to regulate *de novo* protein translation in keratinocytes after arsenite stress (Kappeler et al. 2012). Furthermore lysine acetylation sites are present on ribosomal proteins from humans (Choudhary et al. 2009) and *Plasmodium* (Cobbold et al. 2016). Lysine acetylation marks are also present on the putative *Pf*HDAC interacting proteins *P. falciparum* elongation factor 2 and asparagine-tRNA ligase (Cobbold et al. 2016) and, in human cells, translational elongation factors have been associated with HDACs/HDAC inhibition (Alam et al. 2016, Greer et al. 2015).
Four heat shock proteins (Hsp’s) were among the putative PfHDAC1 interacting proteins identified in this study - PfHsp70-1, PfHsp110, PfHsp90 and PfHsp60. Interestingly, PfHsp70-1, PfHsp110 and PfHsp90 were previously predicted to interact with PfHDAC1 in an in silico study (Pavithra et al. 2007) that utilized human protein interaction predictions from the Human Protein Reference Database (HPRD) and P. falciparum yeast-two-hybrid data (LaCount et al. 2005, Pavithra et al. 2007). PfHsp110 is likely a nucleotide exchange factor for PfHsp70-1 and thus may be an indirect immunoprecipitate in our study (Zininga et al. 2016). A study using antibodies specific for human HDAC1, HDAC2 and HDAC3 has shown that these proteins co-immunoprecipitate with human Hsp70 (HsHsp70) (Johnson et al. 2002). In HeLa nuclear extracts, an interaction between HsHDAC3 and HsHsp70 has also been confirmed using mass spectrometry (Yoon et al. 2003). Furthermore, HDACs have been shown to associate with Hsp70-like proteins in the closely related apicomplexan parasite Toxoplasma gondii (Saksouk et al. 2005). TgHDAC3 (class I HDAC) associates with TgHsp70a (TGME49_311720; chaperone protein BiP) and TgHsp70b (TGME49_273760) (Saksouk et al. 2005). Of the six putative HDACs identified in T. gondii, TgHDAC3 has highest sequence similarity to PfHDAC1 (Aurrecoechea et al. 2009). TgHsp70b has greatest sequence similarity to PfHsp70-1, as determined by BLASTp analysis (Aurrecoechea et al. 2009). Interestingly, a Hsp90-like protein (TGME49_244560) was also identified as a TgHDAC3 complex constituent in the same study. Other evidence for HDAC interaction with Hsp’s includes a study showing that human Hsp90 activity is regulated by reversible acetylation through interaction with HsHDAC6 (Kovacs et al. 2005). In P. falciparum, a potential although indirect association of a PfHDAC protein (isoform not identified) with PfHsp90-containing complexes has also been reported (Pallavi et al. 2010). Furthermore, multiple acetyl-lysine sites have been identified on P. falciparum heat shock proteins indicating possible regulation of these proteins through acetylation (Cobbold et al. 2016, Miao et al. 2013).
Our preliminary validation data focused on candidate \( Pf/HDAC1 \) complex proteins \( Pf/Hsp70-1 \) and \( Pf/Hsp90 \). These proteins were selected based on the literature evidence for interactions with HDACs, as discussed above, and the availability of validated antibodies to these proteins. Western blot data on \( Pf/HDAC1 \) immunoprecipitation eluates indicated that \( Pf/Hsp70-1 \) is co-immunoprecipitated with \( Pf/HDAC1 \). However, this approach did not detect co-immunoprecipitation of \( Pf/Hsp90 \), possibly due to low abundance of this protein in the starting material. In a second approach combining BN PAGE and Western blot, \( Pf/HDAC1 \) co-occurred with \( Pf/Hsp70-1 \) and \( Pf/Hsp90 \) in trophozoite-stage samples. These data indicate that \( Pf/Hsp90 \) (~86 kDa) and \( Pf/Hsp70-1 \) (~74 kDa) putatively co-occur with \( Pf/HDAC1 \) (~51 kDa) in a ~200-250 kDa complex (Figure 4). While this complex size is somewhat smaller than might be predicted given that \( Pf/Hsp90 \) normally exists as a dimer (Corbett and Berger 2010, Pallavi et al. 2010), we cannot rule out dimer dissociation due to the triton-X-100 concentration used, as has been previously seen in other studies (Fiala et al. 2011). In an independent validation method, 2D-PAGE analysis of \( P. falciparum \) trophozoite-stage protein lysates indicated that \( Pf/Hsp70-1 \) co-occurs with \( Pf/HDAC1 \) in two distinct complexes, further validating this interaction.

It has been proposed that HDAC proteins possess glutamine-rich domains, and as a result of hydrophobic patches, do not fold stably (Guo et al. 2007). This could be why \( Pf/HDAC1 \) is recognized by molecular chaperones such as \( Pf/Hsp70-1 \) and \( Pf/Hsp90 \). Thus, it may also be that \( Pf/HDAC1 \) acts as a substrate, rather than a partner protein, for \( Pf/Hsp70-1 \) and \( Pf/Hsp90 \). Both \( Pf/Hsp70-1 \) and \( Pf/Hsp90 \) are potential anti-plasmodial drug targets that have been investigated in vitro, and in vivo (Cockburn et al. 2014, Cockburn et al. 2011, Mout et al. 2012, Murillo-Solano et al. 2017, Pallavi et al. 2010, Pesce et al. 2010, Shonhai 2010, Wang et al. 2014, Wang et al. 2016, Zininga et al. 2017). The majority of studies have focused on identifying \( Pf/Hsp90 \) inhibitors (Murillo-Solano et al. 2017, Pallavi et al. 2010, Posfai et al. 2018, Wang et al. 2014,
Wang et al. 2016) as this protein is essential for *P. falciparum* growth and development (Banumathy et al. 2003). However, heat shock proteins are highly conserved between species and therefore the selectivity of PfHsp inhibitors for parasite protein versus human orthologues has been problematically low. With the identification of structural differences between the parasite and human Hsp’s, as carried out by Wang et al. (Wang et al. 2014) for PfHsp90, the development of *Plasmodium*-specific heat shock protein inhibitors is theoretically possible. The data presented in this study, suggests it would be of interest to examine the efficacy of combination therapies containing Hsp90, Hsp70-1 and HDAC inhibitors to determine if such a combination strategy may result in improved efficacy of these compounds. Pallavi et al. have previously shown an additive and synergistic interaction between geldanamycin (Hsp90 inhibitor) and Trichostatin A (TSA; pan-HDAC inhibitor) in inhibiting *P. falciparum* growth (Pallavi et al. 2010). Future studies could investigate interactions between class I specific-HDAC inhibitors and recently identified PfHsp90 or PfHsp70 inhibitors.

In summary, this is the first study to investigate PfHDAC1 complex proteins in *P. falciparum*. A set of 26 candidate PfHDAC1 interacting proteins were identified in saponin-lysed trophozoite-stage *P. falciparum* 3D7 parasites, and the association of two (PfHsp70-1 and PfHsp90) further investigated using independent methods. These data contribute to our understanding of the function of PfHDAC1 within asexual stage malaria parasites. Furthermore, these findings provide a platform for future studies focused on elucidating the broader function of PfHDACs in *Plasmodium* and the investigation of their interacting proteins, including temporal changes over the course of the intra-erythrocytic life-cycle.

**Acknowledgements**
We thank Griffith University for scholarship support (GUIPRS and GUPRS to JAE). Access to proteomic infrastructure in the QIMR Berghofer Protein Discovery Centre was made possible by funding from Bioplatforms Australia and the Queensland State Government provided through the Australian Government National Collaborative Infrastructure Strategy (NCRIS) and EIF Fund. We thank the Australian Red Cross Blood Service for the provision of human blood and sera.

References


Sacarlal, P. Aide, M. Lanaspa, J. J. Aponte, S. Machevo, S. Acacio, H. Bulo, B.
Sigauque, E. Macete, P. Alonso, S. Abdulla, N. Salim, R. Minja, M. Mpina, S. Ahmed,
H. Sorgho, I. Valea, B. Bioun, I. Guiraud, B. Kabore, O. Sombie, R. T. Guiguemde, J.
B. Ouedraogo, M. J. Hamel, S. Kariuki, M. Oneko, C. Odero, K. Otieno, N. Awino, M.
Njuguna, R. Chilengi, P. Akoo, C. Kerubo, C. Maingi, T. Lang, A. Olotu, P. Bejon, K.
Marsh, G. Mwambingu, S. Owusu-Agyei, K. P. Asante, K. Osei-Kwakye, O. Boahen, D.
Gesase, A. Malaba, O. Abdul, C. Mahende, E. Liheluka, L. Malle, M. Lemnge, T. G.
Theander, C. Drakeley, D. Ansong, T. Agbenyega, S. Adjei, H. O. Boateng, T. Rettig, J.
Bawa, J. Sylverken, D. Sambian, A. Sarfo, A. Agyekum, F. Martinson, I. Hoffman, T.
Mvolo, P. Kamthunzi, R. Nkomo, T. Tembo, G. Tega, M. Tsidya, J. Kilembe, C.
Chawinga, W. R. Ballou, J. Cohen, Y. Guerra, E. Jongert, D. Lapierre, A. Leach, M.
Lievens, O. Oforl-Anyinam, A. Olivier, J. Vekemans, T. Carter, D. Kaslow, D.
Aboossolo, C. Konzelmann, B. G. Methgo, Y. Doucka, A. Flamen, B. Mordmuller, S.
Issifou, P. G. Kremsner, J. Sacarlal, P. Aide, M. Lanaspa, J. J. Aponte, A. Nhamuave,
Juma, M. Shomari, K. Shubis, F. Machera, A. S. Hamad, R. Minja, A. Mtoro, A. Sykes,
D'Alessandro, H. Sorgho, I. Valea, M. C. Tahita, W. Kabore, S. Ouedraogo, Y.
Sandrine, R. T. Guiguemde, J. B. Ouedraogo, M. J. Hamel, S. Kariuki, C. Odero, M.
L. Slutsker, W. Otieno, L. Otieno, O. Nekoye, S. Gondi, A. Otieno, B. Ogutu, R.
Wasuna, V. Owira, D. Jones, A. Onyango, P. Njuguna, R. Chilengi, P. Akoo, C.
Kerubo, J. Gitaka, C. Maingi, T. Lang, A. Olotu, B. Tsofa, P. Bejon, N. Peshu, K.
Marsh, S. Owusu-Agyei, K. P. Asante, K. Osei-Kwakye, O. Boahen, S. Ayamba, K.
Greenwood, J. Lusingu, S. Gesase, A. Malaba, O. Abdul, H. Kilavo, C. Mahende, E.
Lihaeluka, M. Lemnge, T. Theander, C. Drakeley, D. Ansong, T. Agbenyega, S. Adjei, H.
O. Boateng, T. Rettig, J. Bawa, J. Sylverken, D. Sambian, A. Agyekum, L. Owusu, F.
Martinson, I. Hoffman, T. Mvolo, P. Kamthunzi, R. Nkomo, A. Msika, A. Jumbe, N.
Jongert, D. Lapierre, A. Leach, M. Lievens, O. Ofori-Anyinam, J. Vekemans, T. Carter,
D. Leboulleux, C. Loucq, A. Radford, B. Savarese, D. Schellenberg, M. Sillman and P.
Russo, I., S. Babbitt, V. Muralidharan, T. Butler, A. Oksman and D. E. Goldberg
(2010). Plasmepsin V licenses Plasmodium proteins for export into the host erythrocyte.
Saksouk, N., M. M. Bhatti, S. Kieffer, A. T. Smith, K. Musset, J. Garin, W. J. Sullivan,
regulate gene expression pertinent to the differentiation of the protozoan parasite Toxoplasma


Legends to Figures

Figure 1 Western blot analysis of immunoprecipitations using *P. falciparum* trophozoite protein lysates and anti-\(Pf\)HDAC1 antibody. (Ai-iv) Representative microscopic images of Quick Dip-stained *P. falciparum* 3D7 trophozoite stage parasites that were used to prepare four independent protein lysates for immunoprecipitation. (B) Immunoprecipitation was performed using synchronous trophozoite-stage *P. falciparum* 3D7 lysates (\(Pf\)3D7; panels Bi-Biv) using anti-\(Pf\)HDAC1 antibody followed by Western blot analysis using the same anti-\(Pf\)HDAC1 antibody. Each independent experiment included the starting material (SM), wash 3 (W3; wash 1 and 2 not shown) and eluate (E) for the \(Pf\)3D7 test sample and control samples. Controls included a protein negative (PBS only) control (PROT-NEG), antibody negative control (AB-NEG) and a red blood cell control (RBC).

Figure 2 Volcano plot displaying the estimated log\(_2\) fold-changes for \(Pf\)3D7 eluate versus AB-NEG eluate control immunoprecipitation versus the -log\(_{10}\) beta-binomial P-values for 135 quantified proteins. Candidate \(Pf\)HDAC1 complex proteins (i.e. proteins with a P-value < 0.01 and greater than two-fold difference) are highlighted in red. \(Pf\)HDAC1 and proteins selected for validation experiments (\(Pf\)Hsp70-1 and \(Pf\)Hsp90) are labelled.

Figure 3 Annotated gene ontology (GO) biological processes for 26 candidate \(Pf\)HDAC1 interacting proteins identified using immunoprecipitation and mass spectrometry. Annotated GO biological processes were downloaded from PlasmoDB. Multiple GO terms for individual genes are included.

Figure 4 Protein complex co-localisation analysis of \(Pf\)HDAC1 in *P. falciparum* asexual intraerythrocytic lifecycle stages using BN PAGE and Western blot. Asexual intraerythrocytic *P. falciparum* 3D7 samples (ER, early rings; LR/ET, late rings/early trophozoites; LT, late trophozoites; S/ER/LT, schizont/early rings/late trophozoites) were
analysed by 3-12% BN PAGE followed by Western blot using anti-\( P f HDAC1 \) antibody (A-B), anti-\( P f Hsp70-1 \) antibody (A, C) and anti-\( P f Hsp90 \) antibody (B, C), all on the same membrane.

The membrane was stripped in between each probe and complete stripping confirmed by imaging on a VersaDoc 4000MP imaging system (Bio-Rad, USA). Image J 1.51d software was used to overlay Western blot images to determine co-localisation of \( P f HDAC1 \) and complex proteins (Merge).

**Figure 5 Two dimensional BN PAGE / SDS PAGE analysis of *P. falciparum* protein lysates.** Protein lysate was prepared from synchronous *P. falciparum* trophozoite stage parasites, followed by 3-12% BN PAGE. The BN PAGE lane (A) was excised and protein complexes separated in a second dimension with 10% SDS PAGE, followed by either colloidal Coomassie blue staining (B) or two-colour Western blot analysis (C). The PVDF membrane was first probed with anti-\( P f HDAC1 \) antibody and anti-IRDye 680RD goat anti-rabbit secondary antibody (red) and then re-probed with anti-\( P f Hsp70-1 \) antibody and anti-IRDye 800CW goat anti-rabbit secondary antibody (green). Panel i and ii (dashed boxes) highlight complexes in which both \( P f HDAC1 \) and \( P f Hsp70-1 \) were identified.
Table 1 *P. falciparum* proteins significantly enriched in immunoprecipitations with anti-*Pf* HDAC1 antibody (P < 0.01 and greater than two-fold difference).

<table>
<thead>
<tr>
<th>#</th>
<th>Annotated Protein Namea</th>
<th>PlasmoDB IDa</th>
<th>~kDa</th>
<th>P-valueb</th>
<th>Log2 fold-change</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>heat shock protein 70</td>
<td>PF3D7_0818900</td>
<td>74</td>
<td>2.13E-05</td>
<td>1.62</td>
</tr>
<tr>
<td>2</td>
<td>heat shock protein 110</td>
<td>PF3D7_0708800</td>
<td>100</td>
<td>2.89E-05</td>
<td>2.52</td>
</tr>
<tr>
<td>3</td>
<td>histone deacetylase 1</td>
<td>PF3D7_0925700</td>
<td>51</td>
<td>7.07E-05</td>
<td>2.75</td>
</tr>
<tr>
<td>4</td>
<td>tubulin binding cofactor c, putative</td>
<td>PF3D7_1015700</td>
<td>39</td>
<td>8.49E-05</td>
<td>2.24</td>
</tr>
<tr>
<td>5</td>
<td>haloacid dehalogenase-like hydrolase, putative</td>
<td>PF3D7_1226300</td>
<td>33</td>
<td>0.000118</td>
<td>2.09</td>
</tr>
<tr>
<td>6</td>
<td>DNA replication licensing factor MCM2</td>
<td>PF3D7_1417800</td>
<td>112</td>
<td>0.000394</td>
<td>1.91</td>
</tr>
<tr>
<td>7</td>
<td>60S ribosomal protein L4</td>
<td>PF3D7_0507100</td>
<td>46</td>
<td>0.000464</td>
<td>1.70</td>
</tr>
<tr>
<td>8</td>
<td>40S ribosomal protein S5</td>
<td>PF3D7_1447000</td>
<td>30</td>
<td>0.000506</td>
<td>1.89</td>
</tr>
<tr>
<td>9</td>
<td>26S protease regulatory subunit 6A, putative</td>
<td>PF3D7_1130400</td>
<td>50</td>
<td>0.000796</td>
<td>2.17</td>
</tr>
<tr>
<td>10</td>
<td>pyruvate kinase</td>
<td>PF3D7_0626800</td>
<td>56</td>
<td>0.00082</td>
<td>2.12</td>
</tr>
<tr>
<td>11</td>
<td>heat shock protein 90</td>
<td>PF3D7_0708400</td>
<td>86</td>
<td>0.001418</td>
<td>1.10</td>
</tr>
<tr>
<td>12</td>
<td>conserved <em>Plasmodium</em> protein, unknown function</td>
<td>PF3D7_1120000</td>
<td>129</td>
<td>0.001445</td>
<td>1.70</td>
</tr>
<tr>
<td></td>
<td>Protein Description</td>
<td>Accession Number</td>
<td>P-value</td>
<td>Ratio</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>--------------------------------------------------------</td>
<td>------------------</td>
<td>---------</td>
<td>-------</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>60S ribosomal protein P0</td>
<td>PF3D7_1130200</td>
<td>0.002007</td>
<td>1.58</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>asparagine--tRNA ligase</td>
<td>PF3D7_0211800</td>
<td>0.002024</td>
<td>1.02</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>60S ribosomal protein L3</td>
<td>PF3D7_1027800</td>
<td>0.002506</td>
<td>1.78</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>heat shock protein 60</td>
<td>PF3D7_1015600</td>
<td>0.002521</td>
<td>1.70</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>40S ribosomal protein S17, putative</td>
<td>PF3D7_1242700</td>
<td>0.003512</td>
<td>1.43</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>exported protein 1</td>
<td>PF3D7_1121600</td>
<td>0.004249</td>
<td>1.49</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>V-type proton ATPase subunit B</td>
<td>PF3D7_0406100</td>
<td>0.004553</td>
<td>1.68</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>phosphoglycerate kinase</td>
<td>PF3D7_092250</td>
<td>0.005007</td>
<td>1.80</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>40S ribosomal protein S11, putative</td>
<td>PF3D7_0317600</td>
<td>0.005273</td>
<td>1.69</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>40S ribosomal protein S11</td>
<td>PF3D7_0516200</td>
<td>0.005301</td>
<td>1.50</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>elongation factor 2</td>
<td>PF3D7_1451100</td>
<td>0.005478</td>
<td>1.58</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>proliferation-associated protein 2g4, putative</td>
<td>PF3D7_1428300</td>
<td>0.007116</td>
<td>1.38</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>14-3-3 protein</td>
<td>PF3D7_0818200</td>
<td>0.007244</td>
<td>1.39</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>60S acidic ribosomal protein P2</td>
<td>PF3D7_0309600</td>
<td>0.008323</td>
<td>1.32</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>60S ribosomal protein L34</td>
<td>PF3D7_0710600</td>
<td>0.009483</td>
<td>1.17</td>
<td></td>
</tr>
</tbody>
</table>

a(Aurrecoechea et al. 2009); bP-value estimated using a beta-binomial test (Pham et al. 2010).
Supplementary Table 1 GO Term Mapper (Biological Process)¹.

<table>
<thead>
<tr>
<th>GO Biological Process</th>
<th>Protein PlasmoDB Accession #</th>
</tr>
</thead>
<tbody>
<tr>
<td>cellular nitrogen compound metabolic process (GO:0034641)</td>
<td>PF3D7_0211800, PF3D7_0309600, PF3D7_0317600,</td>
</tr>
<tr>
<td></td>
<td>PF3D7_0507100, PF3D7_0516200, PF3D7_0626800,</td>
</tr>
<tr>
<td></td>
<td>PF3D7_1027800, PF3D7_1121600, PF3D7_1130200,</td>
</tr>
<tr>
<td></td>
<td>PF3D7_1242700, PF3D7_1417800, PF3D7_1447000,</td>
</tr>
<tr>
<td></td>
<td>PF3D7_1451100</td>
</tr>
<tr>
<td>biosynthetic process (GO:0009058)</td>
<td>PF3D7_0211800, PF3D7_0309600, PF3D7_0317600,</td>
</tr>
<tr>
<td></td>
<td>PF3D7_0507100, PF3D7_0516200, PF3D7_1027800,</td>
</tr>
<tr>
<td></td>
<td>PF3D7_1130200, PF3D7_1242700, PF3D7_1417800,</td>
</tr>
<tr>
<td></td>
<td>PF3D7_1447000, PF3D7_1451100</td>
</tr>
<tr>
<td>translation (GO:0006412 )</td>
<td>PF3D7_0211800, PF3D7_0309600, PF3D7_0317600,</td>
</tr>
<tr>
<td></td>
<td>PF3D7_0507100, PF3D7_0516200, PF3D7_1027800,</td>
</tr>
<tr>
<td></td>
<td>PF3D7_1130200, PF3D7_1242700, PF3D7_1417800,</td>
</tr>
<tr>
<td></td>
<td>PF3D7_1447000, PF3D7_1451100</td>
</tr>
<tr>
<td>response to stress (GO:0006950)</td>
<td>PF3D7_0708400, PF3D7_0818900, PF3D7_1015600</td>
</tr>
<tr>
<td>small molecule metabolic process (GO:0044281)</td>
<td>PF3D7_0211800, PF3D7_0626800</td>
</tr>
<tr>
<td>cofactor metabolic process (GO:0051186)</td>
<td>PF3D7_0626800, PF3D7_1121600</td>
</tr>
<tr>
<td>cell cycle (GO:0007049)</td>
<td>PF3D7_1417800, PF3D7_1428300</td>
</tr>
<tr>
<td>sulfur compound metabolic process (GO:0006790)</td>
<td>PF3D7_1121600</td>
</tr>
<tr>
<td>DNA metabolic process (GO:0006259)</td>
<td>PF3D7_1417800</td>
</tr>
<tr>
<td>symbiosis, encompassing mutualism through parasitism (GO:0044403)</td>
<td>PF3D7_0309600</td>
</tr>
<tr>
<td>cell proliferation (GO:0008283)</td>
<td>PF3D7_1428300</td>
</tr>
<tr>
<td>carbohydrate metabolic process (GO:0005975)</td>
<td>PF3D7_0626800</td>
</tr>
<tr>
<td>protein folding (GO:0006457)</td>
<td>PF3D7_1015600</td>
</tr>
<tr>
<td>protein targeting (GO:0006605)</td>
<td>PF3D7_1015600</td>
</tr>
<tr>
<td>transport (GO:0006810)</td>
<td>PF3D7_1015600</td>
</tr>
<tr>
<td>homeostatic process (GO:0042592)</td>
<td>PF3D7_0406100</td>
</tr>
<tr>
<td>cellular amino acid metabolic process (GO:0006520)</td>
<td>PF3D7_0211800</td>
</tr>
<tr>
<td>tRNA metabolic process (GO:0006399)</td>
<td>PF3D7_0211800</td>
</tr>
<tr>
<td>generation of precursor metabolites and energy (GO:0006091)</td>
<td>PF3D7_0626800</td>
</tr>
<tr>
<td>cellular component assembly (GO:0022607)</td>
<td>PF3D7_0626800</td>
</tr>
<tr>
<td>macromolecular complex assembly (GO:0065003)</td>
<td>PF3D7_0626800</td>
</tr>
<tr>
<td>mitochondrion organization (GO:0007005)</td>
<td>PF3D7_1015600</td>
</tr>
<tr>
<td>catabolic process (GO:0009056)</td>
<td>PF3D7_0626800</td>
</tr>
<tr>
<td>protein complex assembly (GO:0006461)</td>
<td>PF3D7_0626800</td>
</tr>
</tbody>
</table>
**Supplementary Table 2 GO Term Mapper (Function)**

<table>
<thead>
<tr>
<th>GO Function</th>
<th>Protein PlasmoDB Accession #</th>
</tr>
</thead>
<tbody>
<tr>
<td>structural molecule activity (GO:0005198)</td>
<td>PF3D7_0317600, PF3D7_0507100, PF3D7_1027800, PF3D7_1130200, PF3D7_1242700, PF3D7_1447000</td>
</tr>
<tr>
<td>structural constituent of ribosome (GO:0003735)</td>
<td>PF3D7_0317600, PF3D7_0507100, PF3D7_1027800, PF3D7_1130200, PF3D7_1242700, PF3D7_1447000</td>
</tr>
<tr>
<td>ATPase activity (GO:0016887)</td>
<td>PF3D7_0406100, PF3D7_0708400, PF3D7_1015600, PF3D7_1130400</td>
</tr>
<tr>
<td>RNA binding (GO:0003723)</td>
<td>PF3D7_0516200, PF3D7_1451100</td>
</tr>
<tr>
<td>peptidase activity (GO:0008233)</td>
<td>PF3D7_1130400, PF3D7_1428300</td>
</tr>
<tr>
<td>histone binding (GO:0042393)</td>
<td>PF3D7_0818200</td>
</tr>
<tr>
<td>translation factor activity, RNA binding (GO:0008135)</td>
<td>PF3D7_1451100</td>
</tr>
<tr>
<td>ion binding (GO:0043167)</td>
<td>PF3D7_1451100</td>
</tr>
<tr>
<td>ligase activity (GO:0016874)</td>
<td>PF3D7_0211800</td>
</tr>
<tr>
<td>transferase activity, transferring alkyl or aryl (other than methyl) groups (GO:0016765)</td>
<td>PF3D7_1121600</td>
</tr>
<tr>
<td>transmembrane transporter activity (GO:0022857)</td>
<td>PF3D7_0406100</td>
</tr>
</tbody>
</table>

1. [http://go.princeton.edu/cgi-bin/GOTermMapper](http://go.princeton.edu/cgi-bin/GOTermMapper)
Supplementary Figure 1 Western blots of *P. falciparum* protein lysates. Synchronous trophozoite-stage *P. falciparum* parasite protein lysate was separated by SDS PAGE and Western blot analysis carried out using either anti-*Pf*Hsp70-1 (1:2000 dilution) or anti-*Pf*Hsp90-1 (1:2000 dilution). Anti-rabbit HRP (1:2000 dilution) was used as the secondary antibody and membranes imaged on a VersaDoc 4000MP imaging system.
**Supplementary Figure 2** Western blots showing co-immunoprecipitation of *PfHDAC1* and *PfHsp70-1 using anti-*PfHDAC1* antibody. Western blot of *P. falciparum* trophozoite-stage protein eluate following immunoprecipitation using anti-*PfHDAC1* antibody. (A) A band the expected size of *PfHDAC1* (~51 kDa) was detected in the starting material (SM) of the *Pf3D7* and AB-NEG samples and in the *Pf3D7* eluate, using anti-*PfHDAC1* antibody. The lower molecular weight band is likely cross reactivity due to enrichment of the eluate sample. (B) The same PVDF membrane was re-probed (without stripping) with anti-*PfHsp70-1* antibody. A band the expected size of *PfHsp70-1* (~74 kDa) was detected in the SM of the *Pf3D7* and AB-NEG samples, and in the *Pf3D7* eluate. SM, starting material; W3, wash 3; E, eluate; *Pf3D7*, *P. falciparum* 3D7 trophozoite protein lysate; AB-NEG, antibody negative control; PROT-NEG, protein negative control; RBC, red blood cell control.
Supplementary Figure 3 *P. falciparum* intraerythrocytic lifecycle stage BN PAGE and Western blot analysis using anti-*PfHsp70-1* antibody. The PVDF membrane has been overexposed to show protein complexes recognised by anti-*PfHsp70-1* antibody in the early ring (ER), late ring/early trophozoite (LR/ET) and schizont/early ring/late trophozoite (S/ER/LT) protein lysate preparations. The same blot is shown in Figure 4 of the primary manuscript.