Assessment of the neuroprotective efficacy of poly-arginine-18 (R18) peptides in a pre-clinical model of perinatal hypoxic-ischaemic encephalopathy (HIE)

Adam Edwards
The University of Notre Dame Australia
Assessment of the neuroprotective efficacy of poly-arginine-18 (R18) peptides in a pre-clinical model of perinatal hypoxic-ischaemic encephalopathy (HIE)

by

Mr Adam B. Edwards, BBioMedSc (Honours)

Thesis presented for the degree of Doctor of Philosophy

The University of Notre Dame Australia

School of Health Sciences

2018
ABSTRACT

Hypoxic-ischaemic encephalopathy (HIE) is one of the leading causes of mortality and morbidity in infants, globally. This disorder eventuates following a reduction in oxygenated cerebral blood flow to the foetus in utero, leading to excitotoxic-mediated brain cell (e.g. neuron, glia and glial progenitor cell) death. Currently, there is no clinically appropriate neuroprotective treatment to reduce acute brain injury following HIE. Recent studies have demonstrated that poly-arginine and cationic arginine-rich peptides (CARPs; e.g. R18: R = arginine residues) exhibit potent neuroprotective properties in both in vitro and adult animal models of ischaemia, and therefore have the potential to be developed into a neuroprotective treatment to reduce brain injury following HIE. Therefore, the aim of this thesis was to assess the neuroprotective efficacy of CARPs in a model of perinatal HIE in the rat.

To elucidate the neuroprotective efficacy of CARPs, a novel surgical modification to the original in vivo Rice-Vannucci model of perinatal HIE was developed. Using 7-day old Sprague-Dawley rats, brain injury was induced following the permanent ligation of the common and external carotid arteries, followed by a period of transient hypoxia (8% O₂/92% N₂). Results from this experiment demonstrated that the occlusion of common and external carotid arteries reduced cerebral communicational and/or anastomotic blood flow, reducing variability and improving the reliability in the presence of a cerebral infarct. The demonstration and termination of cerebral communicational and/or anastomotic blood flow improved the pre-clinical assessment of neuroprotective therapies to treat HIE.
The CARPs, R18, R18D (D-enantiomer) and JNKI-1-TATD, were assessed in the modified Rice-Vannucci model of HIE when administered intraperitoneally, immediately after the cessation of hypoxia-ischaemia (HI; 8% O₂/92% N₂ for 2.5 h). Treatment with R18 and R18D significantly reduced infarct volume and improved behavioural assessments in this model. Surprisingly, the well-characterised neuroprotective peptide JNKI-1-TATD, used as a positive control and benchmark, did not exhibit any significant neuroprotection. Succeeding positive results obtained following R18D administration immediately after HI, its therapeutic window was further assessed. R18D significantly decreased infarct volume and improved behavioural assessments when administered intraperitoneally up to 1 hour after the cessation of HI; correlating to 3.5 hours since HI onset. To confirm the neuroprotective mechanism of action of CARPs in HIE, an established *in vitro* primary cortical neuronal excitotoxic injury model was used. Results from this experiment demonstrate that CARPs reduce excitotoxic intracellular calcium influx in a dose-dependent fashion, providing evidence for a role in the reduction of several calcium-dependent pro-cell death cascades. The demonstration of significant neuroprotection following R18 peptide administration provides evidence for a novel therapeutic, which has the potential to reduce brain injury in infants who suffer HIE.

In summary, this thesis has identified a novel surgical modification to improve the reliability and reproducibility of the original Rice-Vannucci model of HIE. In addition, the administration of the R18 and R18D peptides following perinatal HIE, significantly reduces brain injury and improves behavioural assessments when administered up to 3.5 hours after the onset of HI. These findings demonstrate that CARPs provide an exciting and novel approach to reduce brain injury following HIE.
ACKNOWLEDGEMENTS

Firstly, I would like to express my sincere thanks and appreciation to my supervisors, Bruno Meloni, Ryan Anderton and Neville Knuckey, for without them, the work within this thesis would not have been possible. A special mention to Bruno Meloni, whose patience, wisdom and support extended far beyond my PhD, and for that, I cannot thank him enough.

To the staff and students of the Perron Institute, in particular the Stroke Research Group, the past 3.5 years have been incredibly enjoyable and everyone, in one way or another, has assisted me throughout my journey. A special mention to Frank Mastaglia whose poignant advice and knowledge was critical to my professional development.

To my two families, the Edwards’ and the Frzop’s, without your ears, your shoulders or your food, the journey throughout my PhD would have been a very different affair. In particular, to my parents, you gave me the opportunity of an education and taught me the importance of a strong work ethic, both of which were, and will continue to be paramount in my achievements within my PhD and beyond.

An extra special mention goes to my partner, Melissa. At every point along the winding road, you were there by my side. At times, it felt you knew more about my projects than I did. Thank you for being my grounding support and my tether to reality. Thank you for being you.
DECLARATION

I hereby declare that:

- This thesis is submitted as part of the requirement for a Doctor of Philosophy degree as a result of my own work and research. All other sources have been indicated and acknowledged.

- Permission has been granted by co-authors for any work that has been co-published to be included in this thesis.

- This thesis has been substantially completed during the course of enrolment and its content has not previously been submitted or accepted for any other degree in this or any other institution.

- I understand that this work may be electronically scanned for detection of plagiarism.

Signed

Adam B. Edwards

Signed

Coordinating Supervisor: Bruno Meloni

Approval of final thesis
PUBLICATIONS ARISING FROM THIS THESIS

CONFERENCE PROCEEDINGS ARISING FROM THIS THESIS

AWARDS ARISING FROM THIS THESIS

Fee Remission Postgraduate Scholarship

The University of Notre Dame Australia;

University Postgraduate Award

The University of Notre Dame Australia;

Young Investigator Travel Programme Award

10th Federation of European Neurosciences Societies (FENS) Forum of Neuroscience;
Copenhagen, Denmark (2016).

Student Oral Presentation Prize

Combined Biological Sciences Meeting (CBSM);
Perth, Australia (2017).
Berlin Brain Travel Bursary

Berlin Brain and Brain Positron Emission Tomography Conference;

Berlin, Germany (2017)

Student Poster Prize

Science on the Swan;

Fremantle, Australia (2018).

Student Oral Presentation Prize

Science on the Swan;

Fremantle, Australia (2018).
TABLE OF CONTENTS

List of abbreviations .. xx

List of figures .. xxiii

List of tables ... xxv

Chapter 1 – General Introduction .. 1

Introduction ... 2

Perinatal hypoxic-ischaemic encephalopathy ... 3

 Epidemiology .. 3

 Aetiology .. 3

 Clinical aspects ... 5

Pathophysiology ... 6

 Necrosis .. 6

 Apoptosis .. 7

 Excitotoxicity .. 7

 Oxidative stress .. 8

 Mitochondrial dysfunction ... 8

 Inflammation .. 9

Current acute clinical neuroprotective treatment ... 9

 Hypothermia .. 9

Other clinical neuroprotective approaches under consideration .. 11

 Xenon .. 11

 Topiramate ... 12
Pre-term therapeutic hypothermia ... 12
Antenatal magnesium sulfate (MgSO₄) ... 13
Erythropoietin (EPO) and darbepoetin adjuvant to hypothermia 14
CARPs and neuroprotection ... 15
Aims of the thesis .. 14
References .. 17

Chapter 2 – Perinatal hypoxic-ischaemic encephalopathy and neuroprotective peptide therapies: a case for cationic rich arginine peptides (CARPs) 33

Author contributions .. 34

Abstract .. 35

Introduction ... 35

Pathophysiology of perinatal hypoxic-ischaemic brain injury 36

Initiation of the pathophysiological cascade in HIE 36

Excitotoxicity ... 37

Oxidative stress .. 37

Mitochondrial dysfunction .. 37

Inflammation .. 38

Current clinical treatments: hypothermia ... 38

Neuroprotective peptides and their therapeutic application in HIE 39

Peptide therapeutics ... 39

Cationic arginine-rich peptides are intrinsically neuroprotective 39
Cationic arginine-rich cell penetrating peptide neuroprotective mechanisms of actions

Studies using CARPs in animal models of HIE

TAT-NEMO Binding Domain (NBD)

TAT-mGluR1

c-Jun N-terminal kinase (JNK) inhibitors

TAT-BH4

Osteopontin (OPN) and TAT-fused OPN peptide (TAT-OPN)

P5-TAT

D-TAT-GESV

TAT-NR2B9c/NA-1

Poly-arginine-18 (R18 and R18D)

Other peptides examined in animal models of HIE

COG133

Connexin 43 (Cx43) derived peptides

Apelin-36

Innate defense regulator (IDR) peptide IDR-1018

Do all CARPs including TAT-fused peptides share a common neuroprotective mechanism of action?

Conclusions

Future directions

Acknowledgements
Chapter 3 – General Materials and Methods ... 61

Materials and methods ... 62

Peptides used in this thesis .. 62

P7 rat models of hypoxic-ischaemic encephalopathy 63

Animal ethics approval ... 63

Animal numbers used in experimentation ... 63

Behavioural assessments .. 64

Righting reflex .. 64

Negative geotactic response ... 64

Wire-hang assessment ... 65

Original Rice-Vannucci HI surgical procedure .. 65

Modified Rice-Vannucci HI surgical procedure 66

Post-surgical analgesia, animal body temperature monitoring and housing 67

Ex vivo assessment of brain injury ... 67

Tissue sectioning and triphenyl tetrazolium chloride (TTC) staining 67

Measurement of infarct volume from TTC stained coronal slices 68

Statistical analysis ... 68

References ... 69
Chapter 4 – Modification to the Rive-Vannucci perinatal hypoxic-ischaemic encephalopathy model in the P7 rat improves the reliability of cerebral infarct development after 48 hours

Author contributions

Abstract

Introduction

Materials and methods

Rice-Vannucci and modified HIE surgical models

Infarct volume assessment

Functional testing

Magnetic resonance imaging

Processing of FAIR-EPI data

Statistical analysis

Results

Time-of-flight magnetic resonance angiography (TOF-MRA)

Phase-contrast velocity encoding

Pulsed arterial spin labelling (PASL)

Infarct volume measurements after HIE

Functional outcomes after HIE

Discussion

Conclusion
Chapter 5 – Poly-arginine R18 and R18D (D-enantiomer) peptides reduce infarct volume and improves behavioural outcomes following perinatal hypoxic-ischaemic encephalopathy in the P7 rat

Author contributions

Abstract

Introduction

Materials and methods

Animal ethics and study design

Peptides used in the study

Surgical procedure for modified Rice-Vannucci model

Peptide administration

Animals used and sample size

Infarct volume assessment

Behavioural assessment

Cortical neuronal cultures
Chapter 6 – Assessment of therapeutic window for poly-arginine-18D (D-enantiomer) in a P7 rat model of perinatal hypoxic-ischaemic encephalopathy ... 105

Author contributions .. 106

Abstract .. 107

Introduction ... 107

Significance ... 108

Materials and methods .. 108

Peptides used in the study ... 108

Animal ethics and study design ... 108

Surgical procedure for modified Rice-Vannucci model ... 109

Post-surgical analgesia and monitoring ... 109

Peptide administration .. 109

Animals used and sample size ... 109

Infarct volume assessment ... 109

Behavioural assessments ... 109

Statistical analysis .. 110

Results .. 113

Infarct volume measurements ... 113

Behavioural outcomes following R18D administration ... 113

Discussion .. 113

Limitations of study ... 115
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMPA</td>
<td>α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid</td>
</tr>
<tr>
<td>ANOVA</td>
<td>Analysis of variance</td>
</tr>
<tr>
<td>ATP</td>
<td>Adenosine triphosphate</td>
</tr>
<tr>
<td>AUC</td>
<td>Area under the curve</td>
</tr>
<tr>
<td>BSS</td>
<td>Balanced salt solution</td>
</tr>
<tr>
<td>CARP</td>
<td>Cationic arginine-rich peptide</td>
</tr>
<tr>
<td>CBF</td>
<td>Cerebral blood flow</td>
</tr>
<tr>
<td>CCA</td>
<td>Common carotid artery</td>
</tr>
<tr>
<td>CCAO</td>
<td>Common carotid artery occlusion</td>
</tr>
<tr>
<td>CPP</td>
<td>Cell penetrating peptide</td>
</tr>
<tr>
<td>DNA</td>
<td>Deoxyribonucleic acid</td>
</tr>
<tr>
<td>ECA</td>
<td>External carotid artery</td>
</tr>
<tr>
<td>ECAO</td>
<td>External carotid artery occlusion</td>
</tr>
<tr>
<td>EPO</td>
<td>Erythropoietin</td>
</tr>
<tr>
<td>FAIR</td>
<td>Fluid attenuation inversion recovery</td>
</tr>
<tr>
<td>GABA</td>
<td>γ-aminobutyric acid</td>
</tr>
<tr>
<td>HI</td>
<td>Hypoxic-ischaemic or hypoxia-ischaemia</td>
</tr>
<tr>
<td>HIE</td>
<td>Hypoxic-ischaemic encephalopathy</td>
</tr>
<tr>
<td>ICA</td>
<td>Internal carotid artery</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>ICV</td>
<td>Intracerebroventricular</td>
</tr>
<tr>
<td>IL</td>
<td>Interleukin</td>
</tr>
<tr>
<td>IP</td>
<td>Intraperitoneal</td>
</tr>
<tr>
<td>IV</td>
<td>Intravenous</td>
</tr>
<tr>
<td>LPS</td>
<td>Lipopolysaccharide</td>
</tr>
<tr>
<td>MCAO</td>
<td>Middle cerebral artery occlusion</td>
</tr>
<tr>
<td>MEM</td>
<td>Minimum essential medium</td>
</tr>
<tr>
<td>MgSO₄</td>
<td>Magnesium sulfate</td>
</tr>
<tr>
<td>MMP</td>
<td>Matrix metalloproteinase</td>
</tr>
<tr>
<td>MPTP</td>
<td>Mitochondrial permeability transition pore</td>
</tr>
<tr>
<td>MRA</td>
<td>Magnetic resonance angiography</td>
</tr>
<tr>
<td>MRI</td>
<td>Magnetic resonance imaging</td>
</tr>
<tr>
<td>MTS</td>
<td>3-(4, 5, dimethyliazol-2-yl)-5-(3-carboxymethoxy-phenyl)-2-(4-sulfophenyl)-2H–tetrazolium salt</td>
</tr>
<tr>
<td>NMDA</td>
<td>N-methyl-D-aspartic acid</td>
</tr>
<tr>
<td>P7</td>
<td>7-day-old</td>
</tr>
<tr>
<td>PASL</td>
<td>Pulsed arterial spin labelling</td>
</tr>
<tr>
<td>ROS</td>
<td>Reactive oxygen species</td>
</tr>
<tr>
<td>SD</td>
<td>Sprague-Dawley</td>
</tr>
<tr>
<td>SE-EPI</td>
<td>Spin-echo echo-planar imaging</td>
</tr>
</tbody>
</table>
TOF Time of flight

TTC Triphenyl tetrazolium chloride
LIST OF FIGURES

Figure 4.1 Diagrammatic representation of communicational and anastomotic blood flow for CCA occlusion and CCA/ECA occlusive surgical procedures......................... 75

Figure 4.2 Maximum intensity projections of time-of-flight magnetic resonance angiography depicting arterial flow from caudal to rostral direction in sham, CCA occlusion, or CCA/ECA occlusion animals... 76

Figure 4.3 Velocity analysis of blood through the pre- and post-bifurcated left and right CCA.. 77

Figure 4.4 Cerebral blood flow (CBF) (mL/100 g/min) measured by PASL 78

Figure 4.5 Infarct volume analysis, representative images of coronal brain slices, and behavioural assessment 48 h after hypoxic-ischaemic insult.. 79

Figure 4.6 Infarct volume analysis, representative images of coronal brain slices, and behavioural assessment of ischaemic (CCA or CCA/ECA occlusion) or hypoxic-ischaemic (CCA/ECA occlusion and hypoxia) injury 48 hours after insult 80

Figure 4.7 Grayscale 2D, T2-weighted RARE slices in the (a) sagittal and (b) coronal plane demonstrating the 1mm ASL slice positioning in Figure 4 (red bar; to scale). 83

Figure 4.8 Grayscale T1-weighted slice in the coronal plane... 84

Figure 5.1 Percentage infarct volume; percentage infarct volume, representative images of coronal brain slices and percentage infarct volume in brain slices for the different treatment groups as determined 48 h after HI... 91

Figure 5.2 Behavioural measurements using righting reflex, negative geotactic response, wire-hang test and weight gain 48 h after HI... 93
Figure 5.3 Glutamic acid excitotoxicity model; R18, R18D and JNKI-1-TATD dose response study ... 94

Figure 5.4 Intracellular calcium assessment using Fura-2 AM after glutamic acid exposure in primary neuronal cultures .. 95

Figure 5.5 Comparison of percentage total infarct volume in male and female animals with R18, R18D or saline ... 104

Figure 6.1 Schematic representation followed for R18D neuroprotective study in a perinatal rodent model of hypoxic-ischaemic encephalopathy 110

Figure 6.2 Assessment of R18D when administered 30 min after the conclusion of hypoxia ... 111

Figure 6.3 Assessment of R18D when administered 60 min after the conclusion of hypoxia ... 112

Figure 6.4 Assessment of R18D when administered 120 min after the conclusion of hypoxia ... 114
LIST OF TABLES

Table 1.1 Risk factors associated with HI ... 4

Table 1.2 Sarnat staging for diagnosis of HIE severity ... 6

Table 2.1 Studies using CARPs and other peptides examined in animal models of HIE .. 47

Table 3.1 Summary of the peptides used in this thesis ... 62

Table 4.1 Proposed sources of infarct variability within Rice-Vannucci HIE model 74

Table 4.2 All RF pulsed were automatically calculated with ParaVision 6.0.1 based on Shinnar-Le Roux (SLR) algorithm .. 82

Table 5.1 Peptides used in this study .. 89

Table 5.2 Animals excused in the study ... 90

Table 5.3 Cerebral infarct. Percentage of total cerebral volume 92

Table 5.4 Cerebral infarct. Percentage of topographical coronal slices 99

Table 5.5 Behavioural assessment .. 101

Table 5.6 Weight gain 48 hours after hypoxia-ischaemia 103

Table 6.1 Animals excluded in the study ... 118

Table 6.2 Cerebral infarct. Percentage of total cerebral volume 119

Table 6.3 Behavioural assessment; treatment 30 min post-HI 120

Table 6.4 Behavioural assessment; treatment 60 min post-HI 121

Table 6.5 Behavioural assessment; treatment 120 min post-HI 122

Table 6.6 Weight gain from baseline to 48 h post-HI .. 123