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Abstract

Background: A foundational assumption of neuroimaging is the central volume principle

(CVP): the mean transit time of oxygen particles in the brain equals the ratio of blood vessel

volume to blood flow. Changes in mean transit time are expected to cause detectable changes

in images produced by functional magnetic resonance imaging (fMRI). The CVP assumes a

uniform distribution of transit times, but in fact blood vessel volumes are spatially heteroge-

neous. This thesis examines the implications of spatial heterogeneity for fMRI research.

Methods: An amended form of the CVP that accounts for spatial heterogeneity is de-

veloped and parameterised using empirical data. Implications of spatial heterogeneity and

oxygen extraction for fMRI research are then examined using computer simulations.

Results: Spatial heterogeneity significantly reduces mean transit times; however, parame-

terisation of the model shows that, contrary to expectation, transit times might be uniformly

distributed rather than heterogeneous. Nonetheless, computer simulations showed that com-

mon experimental designs are inadequate to detect clinically meaningful changes in transit

time. Again, contrary to expectation, oxygen extraction is found to have no significant effect

on mean transit time.

Conclusion: This thesis casts doubt on the degree to which spatial heterogeneity causes

problems in neuroimaging, but nonetheless reaffirms that existing experimental designs are



x

inadequate to detect significant changes in transit time. Further research on the assumption

that significant changes in neuroimages are linked to changes in transit time is required.
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Chapter 1

Introduction

1.1 About this thesis

The work in this thesis builds on the previous work by the supervisor and others [1], which

use ordinary differential equations (ODEs, rather than partial differential equations) to model

spatially heterogeneous population processes. In their paper, the authors used a linear func-

tional relationship describing the relationship between the expected, or mean, value of a

population variable and the associated variance to account for spatial heterogeneity. Taken

together, the relationship between mean and variance is called mean crowding.[2, 3] The

work in this thesis extends upon this prior work, and applies it in a new context: the haemo-

dynamic response function (HRF) of the brain to neural stimuli.

1.2 Thesis outline

The outline of the thesis is as follows:

• Chapter 2 briefly reviews models of oxygen transport in the brain, and discusses the

effect that the spatially and temporally heterogeneous nature of this phenomenon
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has on interpreting the results of clinical research and diagnostics utilising modern

neuroimaging technology, with particular focus on functional magnetic resonance

imaging (fMRI).

• Chapter 3 considers the problem of the movement of a given particle of oxygen,

typically described in fMRI research using the central volume principle (CVP), which

relates the volume of a blood vessel to the transit time of a particle. A limitation of

this principle is that transit time is a spatially and temporally heterogeneous quantity,

but that this is not captured in the standard formulation of the CVP. In this Chapter, the

central volume principle is therefore:

– extended to account for spatial heterogeneity in the distribution of blood vessel

volumes in the brain, and

– related to an ODE that expresses transit time as a quantity that itself varies with

time

• Chapter 4 examines the application of an enumerative sampling plan with a fixed

level of precision, based upon the pioneering methods of Kuno [4] and Iwao [2], to

designing fMRI studies.

• Chapter 5 treats a similar problem to Chapter 4, but evaluates the accuracy and precision

of fixed size sample plans. Implications for the optimal design of fMRI experiments

are discussed.

• Chapter 6 considers the model for transit time from Chapter 3 from a probabilistic

perspective, and examines the effect of oxygen utilisation by the brain on the results

of the preceding chapters. First, the ultimate fate of a single oxygen particle having a

given transit time is explored from a general probability. Subsequently, the behaviour of

this particle is linked to the state of other oxygen particles using stochastic simulations.

Implications of the findings for fMRI models are reviewed.
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• Chapter 7 reviews the findings of the thesis, and discusses avenues for future work.

In summary, the thesis makes several new contributions, each contained in a Chapter:

• In Chapter 3, the CVP is extended to account for spatial heterogeneity, and related to a

differential equation expressing it as a time-dependent quantity.

• In Chapter 4, the application of enumerative sampling methods in fMRI is assessed

based on fitting to experimental data.

• In Chapter 5, simulations of fixed sample size plans are used to derive operating

characteristics for fMRI studies.

• In Chapter 6, the effect of oxygen utilisation by the brain on the previous results is

examined using stochastic simulation.





Chapter 2

Literature review

2.1 Principles of neuroimaging relevant to the haemody-

namic response function

There has been considerable interest, both academic and public, in the research findings from

the field of neuroimaging.[5, 6] In particular functional magnetic resonance imaging, fMRI,

has been applied as a research tool in a wide range of circumstances. Its suitability for use

in the health sciences and psychology is due to its noninvasive properties, and purported

ability to produce near real time images of brain function.[7] The research findings range

from diagnosing and understanding neurological disease, discovering novel insights into

the mechanical properties of cortical connectivity, and understanding correlations between

psychological behaviour and localised brain activity.[7, 8] Since its humble beginnings

in the 1990s, fMRI research has become one of the fastest growing fields in the medical

sciences [6], in particular in neuropsychological research. The primary purpose of any

neuroimaging experiment is to provide a map of either the structural properties of brain

tissue or the functional aspects of different cortical regions localised to specific tasks.[9]

The hopes and prospects of what this technology might achieve has at times appeared to be
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overestimated within public perception and underestimated by critics of the field.[10] Due to

both professional and public confidence in the ability neuroimaging to explain the how the

brain works, it is important for researchers in the field to investigate where improvements in

the physiological and mathematical models for the technology can be made.[11, 10] For the

field of neuroimaging to achieve this, it must improve its understanding of what neuroimaging

can in fact do and how well can it do it.[12] This thesis is an attempt to contribute to the

growing body of literature that is in search of improving the mathematical models that

underpin the subject to produce more reliable results for experimenters and clinicians.

2.2 Who is interested in neuroimaging and why?

Neuroimaging research is frequently referenced in the media and used in a wide variety of

contexts, such as criminal law cases and public policy.[12, 13] It has become the primary

experimental tool for clinicians and theoreticians in fields broadly labeled under the banner

of cognitive neuroscience. The foundation disciplines that were at the beginning of the field

are computer science, medicine, neuroscience, psychology and psychiatry.[14] Students of

neuroimaging will be required to study physics, engineering, computer science, statistics,

medicine, neuroscience, mathematics, chemistry, and physiology.[7] But, today, researchers

in public policy, behavioural economics, political science, law, sociology, philosophy, and

even theology are also interested in the results of fMRI experiments. Public confidence that

fMRI has implications for discerning between the sick and well, the sane and insane, the

mad and bad, are strikingly optimistic, but the history of science has demonstrated that the

importance of scientific disciplines as young as neuroimaging can often be overstated. A

much noted example of this foolhardy approach were the undelivered promises of phrenology,

invented in the 19th century by Franz Joseph Gall and J. G. Spurzheim.[14] Their technique

called anatomical personology correlated protrusions in the cranium to a set of psychological

attributes.[14] It was thoroughly discredited early in the 20th century, but still had naive
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supporters well into the latter half of the century. Finding a balanced perspective on the

possible benefits and limitations of fMRI can be said to be an obstacle to understanding

the importance of the research field as a whole, and to communicating the results of fMRI

research to a plethora of interested groups. The aim of this thesis is to analyse and improve

existing mathematical models of the haemodynamic response to stimulation HRF, which

underpin fMRI research, and to discuss the relevance of these to clinicians and researchers in

the field.

2.3 Why the focus on fMRI in particular?

fMRI detects the blood oxygenation level dependent, BOLD signal, using large magnets

in a scanner, which is a representation of the underlying physiological properties of the

HRF.[7] The assumption in fMRI experiments is that neural activity responds to a range of

environmental and internal stimuli that cause changes in the physiological activity of the

brain, demanding a surplus of blood to flow to particular region of the brain, each known

as a region of interest, (ROI).[15] Researchers using the fMRI modality assert that a central

focus in fMRI research is that the local cerebral metabolic rate of oxygen (CMRO2), the

rate at which oxygen is perfused into the nervous tissue for metabolic demand, increases

between 10-30 % in response to stimulation.[16, 17] But the regional cerebral blood flow

(CBF) increases by 20-80% during stimulation.[18, 16] This uncoupling of the CMRO2 and

CBF rate leaves a ratio larger than unity.[17] The excess of oxygenated blood produced by

this process is known as hyperemia, and this is what neuroimaging aims to detect.[17, 7] This

difference between supply and demand is called the BOLD signal, or contrast. Unfortunately,

the mathematical relationship linking the BOLD signal and HRF is not completely under-

stood. Understanding this relationship is important for being able to model the correlation

between neural activity and the true underlying HRF. The idea of a correlation between

neural activity and changes in blood distributions in the body dates back as far as William
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James, the Father of American psychology from the 19th century.[19] Researchers are now

confident that we can attribute specific neural activity categorically to different stimuli with

discretely localised cortical activity.[20] The intensity and detectability of the relationship

between BOLD and HRF varies according to the phenomena being investigated. Responses

detectable by fMRI can be observed with motor and sensory neuronal activity, but there is

less confidence that fMRI accurately detects changes in the areas of higher order processing

and cognition.[8] The pioneering discoveries in the latter half of the 20th century, by Paul

Lauterbur, Peter Mansfield, and Raymond Damadian, regarding the detectable magnetic

properties of hemoglobin molecules that travel in the oxygenated blood allowed for the possi-

bility of measuring the behaviour of the HRF and converting them into useful images, via the

BOLD signal.[21] Specialists in fMRI are aware of the multifactorial nature of underlying

variability in the BOLD. One apparent cause of variability is noise in the signal arising from

artifacts in the design and experimental tools. But, more importantly, there are reasons to

believe physiologically the primary reason for changes in the HRF are not just a response

to neural activity. The functional properties of the brain are not just subject to cognitive

processes, but also to physiological systems such as the endocrine, immune, circulatory,

muscular, and neuroendocrine.[11] So it is important to question the assumption of the causal

link between the HRF and neural activity.

The importance of fMRI to produce invaluable structural images for the diagnosis of brain

abnormalities detectable in white and gray matter must not be dismissed.[11]1 Further, the

functional aspects of fMRI imaging are providing insights into the complicated networks, or

neural connectivity, involved in rudimentary cognitive tasks. But, it is important to scrutinise

what claims and assumptions are held by the field, in order to make progress. This will

1Other imaging modalities that utilise this feature of brain activity are: PET, aslfMRI, EEG, and CAT, see
list of abbreviations in appendix 1
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involve raising questions about theoretical notions such as the nature of blood flow through

the brain.

2.4 The assumptions of the physiology behind the BOLD

The HRF itself is mathematically a black box. This is not to say any extraordinary discoveries

have yet to be made, but rather that any predictability in its behaviour is not understood at a

fine grain level, because inputs are not easily related to outputs.[22] There is still much to

learn about the nature of the brain from a wide range of perspective and disciplines ranging

from the scale of the suba-atomic to the macroscopic.[23] Original hopes within the fMRI

community to understand the mathematical relationship of neural activity to the HRF, via

the BOLD signal, as a simple "unitary entity"-a simple deterministic function-have turned

out to look like a pipe dream.[24] Instead, a complicated dynamic relationship is the only

way to connect the numerous features of the cerebral cardiovascular system that make up the

HRF and what is produced as cognitive output. The BOLD signal is determined by three

fundamental parameters: the cerebral blood volume (CBV)-the amount of blood present

in a vessel, cerebral blood flow (CBF)-the volume of blood flowing through a vessel per

minute, and the cerebral metabolic rate of oxygen CMRO2-the rate of oxygen molecules to

be metabolised.[25] The relation between the CMRO2 to CBV is relatively straight forward

to model.[24] The important physiological process that the BOLD actively relies on capturing

is the relationship between the CBF and CMRO2.[26] This is dependent on the discovery of

the “uncoupling” phenomena.[27] The resting state measurements of the two variables show

a large positive correlation (.87), but this changes when neural stimulation is involved.[27]

To account for this unexpected change the oxygen extraction fraction(OEF) must be factored

into the models.[16] This is a rate constant that implies that if one variable increases the other

must decrease in turn.[28] But the OEF depends upon a principle in physiology called the

central volume principle (CVP). The CVP assumes that changes in transit times of oxygen
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particles in the blood are determined by the ratio of blood vessel volume to blood flow, with

blood leaving the heart in larger volume vessels, and passing through major organs, including

the brain, in smaller volume vessels. The CVP is the foundational equation for measuring

the travel time of a particle region of interest (ROI) in the cardiovascular system [25, 29],

and is given by

t̄ =
V(ml)

F(ml/s)
, (2.1)

where t̄ is the mean transit time of an oxygen particle; V is the blood volume in ml; F is the

blood flow rate (ml/s). We now understand, however, that cerebral blood flow is governed by

different mechanisms than blood flow in the rest of the body. In most of the body, constriction

of blood vessels is the primary regulatory mechanism, but the brain has different demands

and regulation of blood flow. This means that the status of the CVP as a building block of

fMRI models needs to be reassessed.

The brain relies on a constant supply of oxygenated blood, which turns out to consume

over 20% of the heart’s cardiac output, making the constant regulation of blood supply to

the brain a necessary feature of the cardiovascular system .[17, 30] It follows from this that

the brain as whole must have a relatively constant rate of blood flow to avoid neurological

damage, stroke, or death of the organism.[30] This further entails at times where there is an

increase in metabolic demand, there is an increase in mean transit time.[24] The question

might be posed, could certain systems of arteries to and within the brain provide vascular

resistance necessary to segment the flow to appropriate areas of the brain without demanding

an increase in overall transit time of blood flow?[30] If this was the case, it would increase

the mean transit time to a smaller region (see eqn. (2.1)). Some authors propose there are

mechanisms to maintain uniform transit times, such as the theory that the parenchymal

arterioles with significant basal tone, play a significant role in controlling this flow.[30] This
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in turn raises the question, how many processes are involved in changes in transit times

of blood flow? Further, what role do the different vessel types that constitute the cerebral

cardiovascular system play in the changes and regulation of transit times? The biophysical

understanding we have of the relationship between hyperemia and metabolic demand are

directly related [17], but what causes the metabolic demand needs to explored further. The

early models of the uncoupling phenomena in [16] assume that extraction of oxygen is the

same across all regions of the brain.[16] If this is true and different regions of the brain have

different demands for oxygen, how can this requirement be met? This is the central question

motivating this study.

Linking (2.1) to experimental data has always proven difficult.[2, 31, 19] Theoretically,

the equation allows a researcher to estimate the value of any one of the three parameters

where the other two are known.[25] Unfortunately, values for the blood flow parameter

are exceedingly difficult to obtain experimentally.[25] Therefore, parameterisation of the

equation has always relied on measures of blood vessel volume and transit time derived

from imaging techniques[25], or the use of indicator dyes, the latter of which has been used

for over a century.[31] Unfortunately, estimates of these parameters used in fMRI research

have been derived from areas outside the brain (such as transit times through the external

jugular vein), or from animal models using different technologies such as PET scans.[27] The

question needs to be asked: does the failure (so far) of fMRI technology to deliver the kind

of results expected by experts and the community relate to problems with the foundational

models used to understand experimental results?

In this thesis, the foundational CVP model is reexamined in light of new physiological

evidence, and revised. Implications of the revised model for understanding fMRI research
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are then examined. Finally, the effect of the uncoupling phenomenon on transit times is

reinvestigated using stochastic simulations.



Chapter 3

Modelling the transit time of a particle

through a vascular pathway

3.1 Introduction

As described in the preceding chapter, a foundational assumption of fMRI models is that the

mean time for an O2 molecule to pass through a blood vessel in the brain is described by

the central volume principle (CVP). The CVP relates the volume of a vessel and the flow

rate of blood to the transit time of a molecule, but typically assumes that both volume and

flow are spatially and temporally homogeneous physical properties of blood vessels. In fact,

as shown in this chapter, the model typically advanced for the CVP assumes homogeneity

of vessel volumes. This is clearly unrealistic. This chapter will reconsider the dynamic

relationship between the three parameters of the CVP, blood flow F , blood volume V , and

transit times t̄, and propose a modification to the CVP that no longer requires that these

key parameters are spatially and temporally homogeneous. As the foundational differential

equation models in fMRI are based on the traditional form of the CVP, any modifications

to the principle will have implications for experimental research. The implications of the
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modified CVP developed in this chapter for the analysis of fMRI experiments will therefore

also be considered.

3.2 Relation of the CVP to foundational experimental mod-

els

The traditional CVP is given by the previously described equation (reprinted here for conve-

nience),

t̄ =
V
F

, (3.1)

in which t̄ is the mean transit time of an O2 molecule, V the tissue volume occupied by blood

vessels, and F the flow rate in these. The importance of the CVP to fMRI modelling arose as

a consequence to early experiments that applied the CVP, (3.1), to animal experiments on the

general circulation.[32] Early fMRI modellers then applied this equation to modelling transit

through an idealised conception of the brain’s circulation.[33] More recently, it has come to

be understood that the brains circulatory system (in particular regulation of blood flow) is

different in some ways to that in the rest of the body. This turns out to be important, as there

are some distinct differences in the conceptual model of [33] and the principles governing

the experimental models.

The foundational experiments of [32] relied heavily upon fundamental principles of fluid

mechanics in constructing their hypothesis of how a substance might be carried through the

bloodstream. In particular, the experimental design assumed that the principle known as

Fick’s first law was true of the circulation. If true, when two miscible liquids (an indicator

solution and blood) were combined by injecting the indicator, the indicator would move
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macroscopically from areas of high concentration (the injection site) to areas of low concen-

tration (the rest of the vasculature).[34] In essence, the experiments assumed that the vascular

system of the experimental model was a jar of liquid through which another concentrated

liquid would diffuse predictably. Hence, after injecting indicator at one site, after a period

of time (governed by the diffusion rate) had passed, the indicator would be measurable (at

lower concentration) at some other site in the system. The (3.1) models the time required for

a particle to move between its initial and final position in such a system, as was demonstrated

by [32].

Early fMRI models employed the concept of the vascular bed as an attempt to develop

an idealised mathematical system that applied the above model to the transit of an oxygen

particle through the brain.[33] The vascular bed was defined as a “black box”, meaning that it

was a system of vessels with one entry point for a particle and one output point for a particle,

but the arrangement of vessels between these points was unknown and seemingly unknowable.

At this time, there existed some empirical estimates of transit time through the brain, meaning

that volume and flow through the vascular bed could be chosen for (3.1) to yield the required

value of t̄. This was a reasonable model for a system with one input, one output and an

arbitrary volume in between. However, later on in the paper (p. 400, [33]) claimed that (3.1)

was applicable to a far more general set of circumstances; specifically, he claimed that if the

arrangement of vessels between input and output was known, and that if either more than one

input or more than one output was permitted, that the expected transit time of a given particle

would still be described by (3.1). This statement became the basis for the reliance on (3.1)

to model the transit time of oxygen particles in most fMRI models.[28] In this chapter, the

claim that (3.1) applies to any system of vessels in any arrangement is now re-investigated.

Ultimately, it is shown that the CVP as expressed in (3.1) relies upon homogeneous blood

vessel volumes. First, this is demonstrated by examining a simple system comprising two
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blood vessels. Then, conclusions from this simple case are generalised to more complex sce-

narios. Finally, a different version of the CVP accommodating these results is then developed.

3.3 The traditional CVP requires homogeneity of vessel

volumes

3.3.1 Simple worked example: a system of two blood vessels

Essentially, there are only two ways to arrange a system of two blood vessels or two vessel

segments: in parallel, where the movement of particles in one vessel is independent of the

movement of particles in the other; or in series, i.e. joined together, so that flow out of one

vessel goes into the other. In the second possible arrangement, the movement of a particle

in each vessel or segment is not independent of its movement in the other, as once joined

together the vessels function as one unit. By applying Fick’s first law to these two scenarios,

six biologically and physically possible combinations of volume and flow parameters can be

identified. These six cases are enumerated in Table 3.1, and equations are now derived from

first principles showing how the indicator-dilution principle would operate for these systems

in practice. It is then shown which of these cases correspond to the standard interpretations

of the CVP (3.1) and to our current understanding of the physiology of the vessels.
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Table 3.1 Possible combinations of flow and volume parameters in systems of two vessels.

Case Flows Volumes Vessel rela-
tionship

I a) F1 = F2 V1 =V2 Parallel
I b) F1 = F2 V1 =V2 Series
II a) F1 = F2 V1 ̸=V2 Parallel
II b) F1 = F2 V1 ̸=V2 Series
III F1 ̸= F2 V1 ̸=V2 Parallel
IV F1 ̸= F2 V1 =V2 Parallel

Considering case (Ia) from Table 3.1, when two vessels of equal volume are filled with

a fluid at a constant flow rate, the mean time for a particle of some dissolved substance to

transit the system has an expected value of

t̄ =
2V
2F

. (3.2)

Thus the CVP, (3.1), applies for systems arranged according to case I a).

Case (II a) is similar to case (Ia), except it considers the more likely scenario that the

volumes of the vessels or vessel segments in the system are different, but that blood flows

through the system at constant rate. For this case the expected transit time of a particle

through the system would correspond to the mean volume of the vessels divided by the flow,

t̄ =
V1 +V2

2F
. (3.3)

This case, as well as (3.2), which is the simplest case of (3.3) can easily be extended to

systems of n vessels, in which case (3.3) will approximate (3.1) as n → ∞. Thus it is clear

that the CVP applies perfectly to systems of n independent vessels of equal volume receiving

a constant flow, and in the large limit as an adequate mean field approximation for systems
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of n heterogeneously sized independent vessels receiving constant flow. The importance of

the assumption of independence in these cases cannot be overstated; so far, we have only

demonstrated that the CVP holds where there is an equal probability of a particle transiting

through any vessel. This assumption is unrealistic, for reasons which will be explored more

fully later in this chapter.

Considering now cases I b) and II b), where vessels are joined, it becomes clear that (3.1)

works less perfectly in these systems. Systems of joined vessels are more realistic as a model

of the transport of substances through the cardiovascular system than are systems of vessels

in parallel. This is because the route that a particle of some substance takes through the body

is a path originating from and returning to the heart. Initially the path is made up of arteries

of large diameter, which take blood away from the heart. As the particle is transported further

from its origin, it passes through smaller and smaller vessels, until it eventually reaches a

capillary, which is approximately one red blood cell in diameter. After the capillary sized

vessels, the vessels making up the path begin to progressively increase in diameter, until

they almost equal or surpass the first arteries leaving the heart in diameter. It is through

these very large veins that the particle will return to the heart.1 Thus, the case of joined

vessels (in nature, almost always of different volumes) is very important biologically .[28, 35]

In order to model the passage of a particle through vessels in series, equation (3.2) must

be modified. Considering case Ib), were two vessels of equal volume joined together, and

fluid passed through them at constant rate F , the expected value of the transit time would

1This representation of a path through the body assumes for the present that the particle is not extracted
from the vascular system for use in the metabolic processes of an organ. The effect of extraction of particles on
the state of the system is examined in Chapter 6.
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now be

t̄ =
2V
F

. (3.4)

In other words, as is intuitively clear, the time taken for a particle immersed in the fluid to

transit two of these vessels would be double that required to transit just one. Clearly, (3.4) is

not equivalent to (3.1). Therefore, the CVP does not apply to systems of joined vessels of

equal volume (corresponding to case I b) in Table 3.1) in its usual form. Extending (3.4) to

account for joined vessels of different volumes, corresponding to case II b) in Table 3.1, the

expected transit time of a particle becomes

t̄ =
V1 +V2

F
. (3.5)

Eq. (3.5) gives the general form of (3.4), but is also clearly not equivalent to (3.1). Therefore,

the CVP does not apply to systems of joined vessels in its original form. There is also an

intuitive realism to the interpretation of (3.5) that is absent when considering equations such

as (3.3). The realism is that when vessels are joined together, it must take a particle longer to

transit through them. Unfortunately, in (3.3), the more vessels that are present in the system,

the quicker (on average) a particle moves through the system. In other words, it takes a

particle a shorter time to move through one of two vessels that are arranged in parallel than to

move through a single vessel. This clearly makes little sense biologically or mathematically.

Putting aside the mathematics for a moment, a possible biological criticism of the claim

that (3.5) is a superior model of transit time to the CVP given in (3.1) exists. This criticism is

that, in reality, blood vessels are arranged both in series and parallel within the body, as shown

in Fig. 3.1. This is certainly true anatomically, but arguably the appropriate mathematics for

studying this system are still those in (3.5). This is clear when one considers the fate of a
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Fig. 3.1 Illustration of the network of vessels making up the cardiovascular system for
oxygen transport through the brain. The figure shows that the vasculature are biologically
constitutive of the structural apparatus of parallel and series models of blood flow. Available
at https://www.pathwayz.org/Tree/Plain/BLOOD+VESSELS

single particle moving through the body. A single particle can only take one pathway through

the cardiovascular system; it cannot be in more than one place at one time. The existence

of multiple possible pathways through vessels arranged in parallel affects the probability

of taking a particular path, but not the time taken to pass through it. This topic is covered

in more detail in the next chapter of the thesis. Furthermore, the pathway through organs

close to the heart (for example, the lungs) is much shorter than the pathway through an organ

far from the heart, such as the big toe. It is clear that all else being equal, it will take much

longer for a particle to travel to the big toe than to the lung, or indeed to the heart muscle

itself. Only (3.5) gives a longer expected transit time for a longer versus a shorter system of

joined vessels of different sizes. Therefore, (3.5) is the best model for the transit time of a

particle through the body. It is this equation that will form the basis of more complex models

https://www.pathwayz.org/Tree/Plain/BLOOD+VESSELS
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of oxygen transport developed in the rest of this thesis.

Fig. 3.2 Example of particle diffusion through a container. This indicates that the distribution
of particles in the vessels will diffuse throughout entire available space. Available at https:
//bit.ly/2Q9ySRl

3.4 Modelling the transit time of a particle through a path

of different blood vessel types

Having demonstrated that (3.5) is a better model than (3.1) for transit time through a system

of heterogeneously sized vessels joined together, transit time through a spatially and tempo-

rally heterogeneous vascular system is now modelled as a function of time. Transit time may

vary with time for a range of reasons (gravity, collisions between particles, change of volume

of elastic vessels, etc.)

Spatial heterogeneity is introduced by modelling heterogeneous volumes of blood vessels

at multiple levels. First, the total volume of the vasculature, VT is expressed as the sum of the

total volumes occupied by different types. This is given by the equation,

VT =VA +Va +Vc +Vv +VV , (3.6)

https://bit.ly/2Q9ySRl
https://bit.ly/2Q9ySRl
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where VA is the volume of the arteries; Va is the volume of the arterioles; Vc is the volume of

the capillaries; Vv is the volume of the venules; and, VV is the volume of the veins. Each type

of vessel is further divided into individual vessels of different volumes, such that

Vq =Vq1 +Vq2 + . . .+Vqn (3.7)

for the qth vessel type. If it is assumed that the pathway that a single particle of indicator

or oxygen takes through these vessel types is made up of just one vessel of each type, the

expected volume of vessels it passes through can be expressed as

E(VT )∼ V̄A +V̄a +V̄c +V̄v +V̄V . (3.8)

For each volume term V̄q in (3.8), there exists a corresponding expected transit time through

vessel type q, t̄q, derived from (3.5). For example, the expected capillary transit time would

be given as,

t̄c =
V̄c

F
. (3.9)

Applying the improved model for joined vessels of different volumes, (3.5), to equations

(3.8) and (3.9) yields the net total expected transit time across all vessel types, t̄T , as

t̄T =
V̄A +V̄a +V̄c +V̄v +V̄V

F
=

Q

∑
q

t̄q. (3.10)

Thus, the expected transit time of a particle through a system of vessel types is the sum

of the expected transit times through the individual vessel types. The distribution of mean

transit times will be determined by the proportion of vessel types that comprise the system

a particle traverses. This continuous distribution will fall between the lowest value, where

the proportion of vessels consists entirely in the capillaries, (∀Vq : Vq ∈Vc), and a maximum
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value, where the entire proportion of vessels contain arteries, (∀Vq : Vq ∈VA).[29, 31] The

pathway for a particle through only the largest and smallest vessel types can be modelled

using the step function

t̄q =


V̄max

F ∀Vq : Vq ∈VA

0 ∀Vq : Vq ∈Vc.

(3.11)

Using the extreme values from (3.11), it can be shown that the mean transit time is related

to the maximum transit time by a logistic curve if:

1. The mean value is half of the maximum.

2. At half the maximum value of the function, the value of second derivative is equal to

zero, indicating that a point of inflection occurs there.

Therefore, let the relationship t̄q = f (V̄q) be described by

f (V̄q) =
t̄max

1+Ae−F(V̄q−0)
, (3.12)

where, t̄max is the limit; F the steepness of the curve, given by the flow rate; and A is a

positive integer to represent the starting point of the curve.

The inflection point for the logistic equation (3.12) is found solving the second derivative

for zero. The second derivative is

f (V̄q)
′′ =

(−AFe−F(V̄q))2 − (AF2e−k(V̄q)

2t̄max(1+Ae−F(V̄max))3t̄max(1+Ae−F(V̄max))2
(3.13)

and the value of V̄q when the second derivative is zero is

V̄q =
lnA
F

. (3.14)
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Substituting into (3.11),

f (
lnA
F

) =
t̄max

1+Ae−F( lnA
F )

f (
lnA
F

) =
t̄max

2
. (3.15)

The mean value occurs at half of the maximum value of the function, and at this point the

second derivative is equal to zero. Therefore, the relationship between transit time and

volume is logistic.

The distribution of possible transit times measured at different times, ∆t, is also modelled

using a logistic function, by similar argument. The smallest difference between transit times

measured over the interval ∆t is equal either to 0, or the largest difference tmax. Let the total

transit times as a funtion of time be described by

tT (t) =
r

e−rt +h
, (3.16)

which has a maximum value of r/h. The second derivative of (3.16),

tT (t)′′ = tT (t)′r−2htT (t)) (3.17)

equals zero at

t =
−lnh

r
. (3.18)
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Substituting (3.18) into (3.16) gives,

tT (
− lnh

r
) =

r

e−r( lnh
−r )+h

(3.19)

tT (
− lnh

r
) =

r
2h

.

The second derivative of (3.16) equals zero (the inflection point) when the value of the

function is half the maximum; thus, transit time as a function of time can be described using

a logistic function.

It follows that the difference in transit time as a function of time can be modelled using

the first derivative of (3.16), which is

dtT
dt

= tT (t)(r−htT (t)). (3.20)

Biologically, the parameters of the logistic equation (3.20) can be interpreted as follows. The

parameter r is the deceleration of a particle from its initial velocity. The parameter h gives

the effect of more and longer pathways on transit time.2 These parameter interpretations are

best understood by recalling that a transit time approaching zero3 is very fast (equivalent to

the time taken to pass through the capillaries according to [32]), and a large value represents

a long transit time. Henceforth, the (t) notation is omitted for clarity of presentation, but note

that transit time variable remain functions of time.
2If the electrical circuit analogy introduced previously for systems of vessels in series and parallel is

continued with, carrying capacity can be considered similar to “capacitance”.
3A transit time of exactly zero can be taken to indicate no movement occurs; this will be explored more in

the next chapter
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3.4.1 Application of the transit time model to oxygen transport in the

brain

Compared to a relatively linear path that does not differ much between individuals, such as

through the femoral arteries and veins, the path that a particle may take through the brain is

very torturous, differs substantially between people, and traverses substantial and complex

networks of capillaries. For application to such a system, (3.20) needs to be generalised to

apply to any number of vessels, of any volume, and of any type (arteries, capillaries, etc.).

To generalise (3.20) to account for differences in transit time across Q vessels of different

types in the brain, (3.20) can be rewritten as

dtT
dt

=
Q

∑
q=1

tq(r−htq), (3.21)

with tT denoting the total transit time through the brain. The introduction of Q vessels into the

deterministic model allows for measuring the effect of the change in any vessel q’s volume

over time on the transit time of a particle. In the brain, a substantial proportion of vessels

are capillaries. As established by [32], transit time through capillaries is so rapid that the

time to pass between two points in a capillary can be considered equal to zero. Distributions

of values featuring a large number of zeros are called overdispersed, and it is has been

shown previously that logistic equations such as (3.20) and (3.21) require modification to

accurately model overdispersed quantities.[1] Following [1], I incorporate a distance measure

by dividing (3.21) by ∑
Q
q=1 tq, which expresses the transit time through each vessel as a

function of the transit times for all vessels.

Obtaining

1

∑
Q
q=1 tq

dtT
dt

= r−h
∑

Q
n=1 t2

q

∑
Q
n=1 tq

, (3.22)
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note that the term,

∑
Q
q=1 t2

q

∑
Q
q=1 tq

, (3.23)

is mathematically equivalent to Lloyd’s mean crowding index [3],

x∗ =
∑

Q
q=1 x2

q

∑
Q
q=1 xq

−1, (3.24)

plus one. The mean crowding index is mathematically simple but has profound implications

for understanding the behaviour of dynamical systems .[1] The terms crowding, overdis-

persion, and aggregation are used interchangeably in relevant literature, because where

observations in a data set cluster, it is expected that there are relatively more observations

that equal zero. Essentially, mean crowding is a way to account for the effect of such overdis-

persion on estimates of mean behaviour.

The mean crowding index, has an alternative and equivalent formula that expresses it as a

function of the first two moments of any probability distribution. For any distribution, where

x̄ and s2 are considered the first and second moments of the distribution, mean crowding can

be as expressed as

x∗ = x̄+
s2

x̄
−1 (3.25)

This formulation has the advantage of linking (3.24), which describes mean crowding in

terms of a set of empirical measurements, to the parameters of a number of probability

distributions explicitly.[2] Moreover, it can be shown using (3.25) that mean crowding has a
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Table 3.2 Values for a a and b for given transit times for oxygen particles diffused in blood

Distributional assumptions b a

Uniformly distributed variable 1 −1
Distribution of variables is regular (underdis-
persed) but not uniform

0−1 −1

Poisson distributed variables 1 0
Poisson distributed clusters of variables 1 > 0
Overdispersed (negative binomially) distributed
variables

> 1 0

Overdispersed distributed clusters of variables > 1 > 0

linear functional relationship with the mean.[2] Consider a linear equation of the form

x∗ = a+bx̄. (3.26)

Values of a and b that link x∗ to the mean of a number of probability distributions are shown

in Table 3.2. How these values are derived is best seen by considering (3.25) and (3.26).

For example, for a Poisson distributed random variable s2 = x̄, so it can be seen simply that

x∗ = x̄ for both (3.25) and (3.26). The statistical definition of an overdispersed distribution

is one where s2 > x̄, so x∗ > x̄. For both (3.25) and (3.26) to satisfy x∗ > x̄, requires either

a > 1, b > 1 or both. Hence, it is easy to see how the parameters expressing mean crowding

in terms of a and b can be used to model the effect of different probability distributions on

the expected mean value of some quantity.

Returning to the transit time model from (3.22), the presence of the mean crowding

term means that different distributions of vessels can be included by substituting the linear

relationship of variance and mean for (3.23). Recalling that (3.23) is equivalent to mean
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crowding ((3.24)) plus one, (3.22) can be rewritten as

1

∑
Q
q=1 tq

dtT
dt

= r−h(t∗T +1), (3.27)

where t∗T (t) is the mean crowding of transit times for any time point. Equation (3.27) can be

further written in terms of the linear relationship between t∗T (t) and the mean t̄T , giving

1

∑
Q
q=1 tq

dtT
dt

= r−h(a+bt̄T +1). (3.28)

As ∑
Q
q=1 tq = tT , (3.28) can be rewritten as

dtT
dt

= rtT −h(a+bt̄T +1)tT (3.29)

It is apparent from (3.29) that different values of parameters a and b have considerable effect

on transit time. The conventional CVP does not allow for this analysis and leaves itself open

to error in estimating transit time in overdispersed systems of vessels, where the variance is

significantly larger than the mean. As shown in Table 3.2, (3.29) can do this, whilst being

equivalent to the improved CVP-type relationship given in (3.5) and (3.10).

Equation (3.29) has two equilibrium solutions: the trivial solution 0, and

t̄T =
r
h −a−1

b
; (3.30)

the notation t̄T is used, as (3.30) will correspond to the average value of transit time in a

system at equilibrium. It is straightforward to show that for r < h(a+1), the trivial solution

of (3.29) is unstable and the positive solution (3.30) is stable. The converse is true for

r > h(a+1). Biologically, the interpretation of these results is subtle; recall that previously
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it was noted that whilst a transit time of almost 0 is taken to be very fast, a transit time of

exactly 0 is taken to mean no movement at all. The interpretation of the stability conditions is

therefore that for the particle not to move at all between two points, or a transit time of exactly

0, deceleration needs to be very large in value. Conversely, for a positive non-zero value

of transit time to be the equilibrium solution to be stable, deceleration r must be less than

the “capacitance” of the system h. This is best understood by thinking that is deceleration

is low, the particle remains close to its initial velocity in its value. In a sense, transit time

is described by a step function; there is no transit time if there is no movement (tT = 0), or

else the particle does move between two points, but decelerating slightly as tT increases. The

implications of these results for transit time with different distributions of vessel volumes are

now shown numerically.

3.4.2 The effect of heterogeneous blood vessel volumes on transit time:

Numerical results

The effects of different distributions of vessel volumes on maximal transit time were analysed

numerically. Numerical analysis used Euler’s method to approximately solve (3.29). Initial

conditions were tT (0) = 0.0001, and parameter values common to all simulations were

r = 0.167 and h = 0.025. Values of a and b for three different distributions of blood vessel

volumes (uniform, Poisson and overdispersed) corresponded to those in Table 3.2. The results

showed that overdispersed distributions of vessel volumes significantly decreased transit

time, as shown in Figure 3.3. Taken in concert with the analytical results previously outlined

in this chapter, this finding has clear implications for interpreting the clinical implications of

existing fMRI models, as discussed below.
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Table 3.3 Equilibrium values of (3.30), given parameters describing different distributions of
blood vessel volumes.

Parameters Equilibrium transit
time

Distribution of blood
vessels

a =−1, b = 1 r
h Uniform

a = 0, b = 1 r
h −1 Poisson

a ≥ 0, b > 1 r
h −1 Overdispersed

Fig. 3.3 Numerical solutions to (3.29) for three different distributions of vessel volumes.
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3.5 Discussion

In conclusion, this chapter set out to examine the assumptions of the standard interpretation

of the CVP in relation to modelling the hemodynamic response function. It was found that it

relates the blood volume and flow of system of vessels as homogeneously distributed. This

does not reflect the anatomical realities of blood vessel distribution. A different formulation

of the CVP was suggested to account for the different formations that blood vessels may take.

The analysis provided a more suitable framework for extending the (3.2) into a differential

equation capable of determining the effect spatial heterogeneity has on transit times, given

specified distributions of blood vessel volume.

This chapter makes a number of contributions to the study of the transit time of oxygen

particles through the brain. First, this chapter demonstrated that the conventional CVP (a

building block of fMRI modelling, given in (3.1)), only holds for a system of homogeneously

distributed blood vessels, that run in parallel. Such a system is similar to the idealised

vascular bed used by [29], but displays a number of unrealistic properties. For example,

transit time always decreases in this model as the total volume of vessels passed through

decreases, due to the assumption of a parallel network of vessels. This is not realistic, as

in the body, many vessels are joined in series, and it will take longer for a particle to pass

through two vessels arranged in series than through one of two vessels arranged in parallel.

The second contribution of this chapter is the construction of an improved model of the

CVP, which differed in a) allowing for heterogeneous distributions of blood vessel volumes

and b) expressing transit time itself as a function of time. The logistic equation was chosen

as the basis of this model, given that it approximates the distribution of transit times one

would expect to see in biologically realistic situations. The model’s primary two parameters

that govern the model are, r, indicating the deceleration of the particle, and h, the particles
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capacity for reaching a certain transit time. The logistic model is also chosen because with

appropriate parameter choices it excludes impossible values such as negative transit times,

and allows for incorporating the effects of spatial heterogeneity into the model via its rela-

tionship to Lloyd’s mean crowding index.[1, 36] Using the model given in(3.29), it is shown

that when the distribution of blood vessel volumes is overdispersed, meaning there are many

capillaries of very small volume compared to arteries and arterioles, the mean transit time

is shorter. In some ways, this does not contradict the standard CVP, which predicts shorter

transit times with more vessels running in parallel, but rather modifies it to more accurately

capture the biology. More arteries and veins, which run in series, as is shown in Figure 3.1,

lengthen transit time, whilst many small capillaries in series, shorten the expected transit

time; the new model is thus an improvement on the CVP, rather than a rejection of it. Its

ability to count for the effect of different types and arrangements of blood vessels on transit

time suggests it may have promise in reconciling the results of fMRI modelling and fMRI

experiments, which to date have given conflicting results.

A limitation of this chapter is that it only considers a model of the expected transit time

of one oxygen particle in the absence of oxygen extraction in the brain. Oxygen extraction

is required to yield an fMRI image, as the BOLD contrast converts the electrochemical

difference between hemoglobin with oxygen particles attached and unattached into an image.

The effect of oxygen extraction on the results given in this chapter is explored in Chapter 6.

The next two chapters take the results of the this chapter and explore their implications for

the design of fMRI experiments.





Chapter 4

Sequential sampling plan using a fixed

level of precision

4.1 Introduction

The previous chapter introduced the concept of mean crowding, and the role it plays in

understanding the effect of spatial heterogeneity on dynamical systems. Mean crowding, in

the context of modelling the haemodynamic response, describes the relationship between

the average transit time value and its variance [2, 3], where heterogeneity arises due to

variability in blood vessel volumes. The experimental estimation of quantities such as the

mean is more difficult in heterogeneous systems, as sampling error is considerably larger.

This effect is especially noticeable when estimating the mean in an overdispersed system,

where the large number of zero measurements results in a tendency to underestimate the

true mean.[36] In the context of fMRI, the difficulty in relating measures of transit time to

neuroimages is often attributed to difficulty in measuring transit time with precision due to

the heterogeneous distribution of blood vessels throughout the brain. In the next two chapters,

sampling theory is used to estimate the number of measurements that an fMRI experiment

must take to estimate clinically and statistically significant variations in transit time with
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acceptable precision.

Experiments in fMRI are subject to both sampling error related to heterogeneous distribu-

tion of blood vessel volumes, as described above, as well as measurement error.[37, 18] As

was outlined in Chapter 2, in fMRI the BOLD signal is an image derived from the electro-

chemical difference in paramagnetic deoxygenated to oxygenated haemoglobin following

the uncoupling principle. Measurement of the BOLD signal has an inherent level of error,

like all measurement techniques.[18, 28] This error can only marginally be controlled for

experimentally, but with improvements in understanding the properties of the BOLD signal,

might be accounted for in analysis. Sampling error can be controlled for in experimental

design by proper calculations of the sample size required to yield precise estimates. The

reduction of sampling error in fMRI experiments is the focus of the next two chapters.

4.2 Methods

4.2.1 Overview

It is often claimed that the heterogeneous distribution of blood vessels in the brain is an

obstacle to deriving precise estimates from fMRI experiments.[38] This need not be the case,

so long as the relationship between the mean and variance in blood vessel volume is known.

This chapter attempts to estimate this relationship and then begins to explore its implications

for the design of fMRI experiments.

4.2.2 Data source

Experimental data from the foundational work of Grubb et al. is used to estimate the

relationship between the mean and variance in blood vessel volumes.[39] This experimental

study measured the transit time of chemical indicators multiple times across multiple subjects



4.2 Methods 37

(15 Rhesus monkeys), in order to estimate the within-host and between host variance in

transit times. The indicator used in these studies was C15O-hemoglobin tracer. This indicator

was chosen because its binding to hemoglobin closely resembles the binding of oxygen,

but it is not extracted in the brain like oxygen, thus yielding measurements of transit time

through the brain that are unaffected by the extraction process. Most fMRI experiments use a

sample size between 1 and 12 subjects, due to the high cost involved in conducting fMRI

studies.[37] The experiments by Grubb et al. therefore capture the kind of variation in transit

times that would be encountered in the most extensive fMRI experiments commonly used.

4.2.3 Data analysis

As described in the previous chapter, mean crowding can be expressed as a linear relationship

between the mean and variance of a random variable. Experimental data can be used to

estimate the parameters of the linear relationship, and then used to determine the sample

size for future experiments that is adequate to estimate the mean with a specified degree of

precision. Precision, D, is defined in the context of fMRI experiments as

D =

s√
n

t̄T
, (4.1)

where s is the standard deviation in a sample of measurements of transit time, s/
√

n is the

standard error, and t̄T is estimated mean transit time for a sample.[4] The minimum number

of measurements of transit time, nmin, required to give an estimate of t̄ with precision ≥ D

can be given by rearranging

T n ≥ (a+1)/
D2 − [b−1]

nmin
, (4.2)

where Tn is the sum of transit times across nmin measurements, D is precision given by

(4.1) and a and b are estimated from experimental data. In this case, these parameters were
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estimated by fitting the model

t∗T = a+bt̄T (4.3)

to the data of Grubb et al.,[39], where t∗T is the mean crowding of transit times. Grubb et

al.’s raw data, and the estimated mean crowding t∗T are shown in Table 4.1. In this table, n is

the number of measurements per Rhesus monkey. The model was fitted using the glm ()

command in R.

4.3 Results

The estimated values of a and b were -0.822 and 1.01 respectively. The model (4.3) is shown

fitted to the data from Table 4.1 in Figure 4.1. The estimated values of a and b were not

significantly different to the values a =−1, b = 1 that arise when (4.3) is fitted to uniformly

distributed data (as described in the preceding chapter). When the estimated values of a and

b and a desired level of precision, D = .10, were substituted into equation (4.2), it was found

to result in a zero in the denominator:

T n ≥ (−0.822+1)/
0.12 − [1.01−1]

10
(4.4)

This suggested that (4.2), developed by Kuno and Iwao [4], is not an appropriate technique

for calculating the sample size that guarantees an estimate with fixed precision when mea-

surements are uniformly distributed. This finding has not been made in the literature before.

In addition, these results suggest that transit times are closer to be uniformly distributed

than heterogeneously distributed, as if often claimed, if the data of Grubb et al. are taken as

representative.
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Fig. 4.1 Regression analysis for the mean crowding of transit times from Grubb et al. data.
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Table 4.1 Transit times and variances for 15 rhesus monkeys

t̄ s2 t∗T n

4.2 0.06 3.21 3
3.17 0.15 2.21 3
4.32 1.38 3.64 2
4.07 2.41 3.66 3
3.53 0.90 2.79 3
3.08 0.18 2.13 2
2.86 0.50 2.03 3
3.17 1.32 2.58 3
2.81 0.43 1.96 3
2.85 0.42 2.00 2
4.45 2.38 3.98 3
4.69 0.53 3.80 4
5.77 0.44 4.84 4
4.87 1.12 4.10 3
4.52 0.60 3.66 2

4.4 Discussion

This chapter examined the requirements for fMRI experiments in two ways. First, it explored

the relationship between the mean and variance of transit times by regression analysis of a

foundational data set. Second, it examined the applicability of a common sample size calcu-

lation, based on the regression results, to fMRI studies. Two new contributions were made by

this chapter: first, that transit times may actually be uniformly, rather than heterogeneously

distributed, as is often argued. Second, results suggested that where variable measurements

are uniformly distributed, it is not possible to use the relationship between mean crowding

and mean density to calculate sample size. To the best of my knowledge, this result has not

been previously demonstrated in the literature. This second point is primarily of theoreti-

cal interest, as in the typical applications of the mean crowding-mean density relationship

(ecology and epidemiology), few outcomes or measures are uniformly distributed. Therefore,
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it will not be explored further, beyond noting its relevance to future work in these fields.

The finding that transit times for oxygen particles in the brain may be uniformly distributed,

however, has profound implications for fMRI experiments and the clinical application of

fMRI results.

As discussed in Chapter 2, it is argued that the brain accomplishes uniformity in mean

transit time, arguably through a set of regulatory mechanisms. The results found in this

chapter indicated the transit times were uniform [39], even though the distribution of blood

vessel volumes can still be assumed to be distributed heterogeneously. This further implies

the argument developed in the previous chapters that this raises problems for the correlations

drawn between blood flow changes and neural activity. In turn, our focus should be redirected

in equal proportion to what the effects on the BOLD signal arise from the physiological

processes that maintain this uniformity in transit time.

Whilst this chapter made some important contributions, the main problem it sought to

address has not been solved adequately. Therefore, the next chapter explores an alternative

method for estimating the sample size with which clinically and statistically significant

findings from fMRI experiments can be derived experimentally.





Chapter 5

Fixed size sampling plan

5.1 Theory and motivation for a fixed size sampling plan

The previous chapter explored whether the number of measurements required in an fMRI

experiment to achieve a fixed level of precision could be estimated using the methods of

Kuno and Iwao.[4] It was discovered that this calculation method was not possible where

measurements were uniformly distributed, which was the case with the data set used to

estimate the parameters of Iwao’s mean crowding–mean relationship. This chapter tries a

different approach; namely, specifying the magnitude of a clinically significant change in

transit time, and estimating the sample size required to detect this change with a specified

level of precision.

5.2 Methods

5.2.1 Overview

In this chapter fixed sample size plans to estimate a critical change in transit time with a

minimum level of precision are evaluated using the statistical programming language R.
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Details for the following code can be found in appendix 2. The critical change in transit time,

which fMRI experiments should be able to detect, was derived from the literature; transit

times > 6 seconds are commonly regarded as indicating a clinically meaningful response to

a stimulus in fMRI experiments.[7]

5.2.2 Data sources

Simulated data were used to determine the sample size required to detect clinically signif-

icant variations in transit time. Fixed sample sizes of 2, 5, 10, 15, and 20 measurements

(corresponding to the sample sizes commonly used in the fMRI literature) were tested for

their ability to detect transit times > 6 seconds. These sample size represent the number of

measurements taken in fMRI experiments, whether these comprise one measurement per

subject or a set of repeated measurements from one or more subjects.

It is assumed that biologically possible transit times were between 0–15 seconds, based

on values that appear in the experimental literature .[18] Transit times were taken to follow

a gamma distribution with scale parameter 0.5 and shape parameter µt̄/0.5, where µt̄ is

the true mean transit time. This distribution encompassed positive values between 0 and

15, with most values around 6 seconds, the theoretical “normal” transit time referred to in

the literature.[18, 7] 100 samples from this distribution were drawn using Latin hypercube

sampling, to ensure the whole distribution was sampled evenly. This was carried out using

simulations in R using LHS package lhs(). Fixed size samples of 2, 5, 10, 15, and 20

measurements were sampled 1000 times from each of the 100 Latin hypercubes. Each

instance of using a particular sample size is called a sampling iteration; thus, I simulated

1000 sampling iterations of each sample size on each of 100 simulated data sets.
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5.2.3 Data analysis

The mean and variance of each 1000 sampling iterations were calculated to assess the

precision of each fixed sample size at calculating transit time, where precision D is defined as

D =

s√
n

t̄T
, (5.1)

s is the standard deviation of 1000 sampling iterations, s/
√

n is the standard error, and t̄T is

estimated mean transit time for 1000 sampling iterations. The desired level of precision was

the same as in chapter 4, at the level of 0.10.

In addition to calculating achieved precision, the performance of each fixed sample

size was assessed by means of an operating characteristic (OC) curve. The OC gives the

percentage of estimated transit times > 6 seconds, and compares these to the actual mean

transit time of a given Latin hypercube. The OC function gives the probability that each

sample plan will be useful in determining whether the true mean transit time exceeds the

clinically significant value of 6 seconds. The OC curve was derived by fitting the estimated

mean transit time for each sampling iteration to a four parameter equation using non-linear

least squares. The equation is

OC = y0 +
a

1+(µt̄
t̄0
)b
. (5.2)

The lower (fixed at 0) and upper (fixed at 1) asymptotes are represented by the parameters,

y0, and, a, respectively; t̄ is the value of µt̄0 at the point of inflection. The slope parameter is

b. The steepness of the curve is an indication of how close the true mean transit time, µt̄ , is

to the estimated mean transit time t̄ for the datum. An optimum fixed size sample plan would

make make as few incorrect (> 6 seconds when true transit time ≤ 6 seconds) as possible.
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5.3 Results

A precision of D ≤ 0.10 in estimate of the mean transit time was attained for all sample

sizes greater that 10 over 75% of the time (see Figure 5.1). The sample sizes 2, and 5,

performed less well, achieving the desired precision 40 and 50% of the time respectively.

They also showed significant positive skewness in their estimates with a considerable number

of outliers. The improvement in precisely estimating the mean was further evident from

the change of steepness in the slopes of the OC curves, shown in Figure 5.2. In Figure 5.2,

the area above the curve gives proportion of sampling iterations that estimated the mean

transit time as being > 6, and the area below the curve gives the proportion of estimates of

mean transit time that are ≤ 6 seconds, over 1000 sampling iterations on each data set. The

x axis shows the true mean transit time for each data set. The ideal OC curve would be a

step function, estimating 100% of data sets with a true mean transit time ≤ 6 as having a

mean transit time ≤ 6, and zero percent of data sets with a mean transit time > 6 as having

one of ≤ 6 seconds. The purple curve, showing the OC for sample size 20, shown in Figure

5.2, closely approximates the ideal step function, but others make frequent misclassification

errors. For example, a sample size of 5 (red line in Figure 5.2) had an operating characteristic

of 0.1 for a true mean transit time of 8 seconds. This means that the fixed sample plan of size

5 estimated the mean transit time to be ≤ 6 seconds on 10% of sampling iterations where the

true mean transit time was 8 seconds.

5.4 Discussion

The results reinforce the well established difficulties with sampling in fMRI experiments.

Sample sizes under 5, though commonly used experimentally, are too low to have any relia-

bility, frequently failing to identify data sets with true mean transit times above the clinically

significant threshold of 6 seconds (see Figure 5.2). This issue has been addressed extensively
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Fig. 5.1 Level of precision achieved (D = SE/t̄) for the estimated mean transit time for 100
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boxes the 75th percentile; the whiskers show the 10 and 90th percentile; the dots represent
any outliers. The red line indicates the target level of precision (D = 0.10).
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in the current literature, but without satisfactory solutions. Scholars and clinicians have

called for journals to exclude papers citing sample size less than 16 .[40, 41] The limitation

of this approach is twofold. First, it excludes much of the past experimental data which tends

to have smaller sample sizes, but is still used in most large scale analyses today. Second, even

studies with sample sizes greater than sixteen may not be reliable; meta analyses have shown

significant heterogeneity between such studies arising from differences in experimental

design, which reduces confidence in the results of even adequately sized studies.[42]

A limitation of the work carried out in the Chapter was the selection of only one type

of theoretical distribution used for generating the simulated population to draw from: the

gamma distribution. Although a reasonable choice, considering the limited information

there is on population distributions of transit times, it would be an improvement to simulate

fixed sampling over a larger range of different distributions. A second limit limitation of

the work in this chapter is that theoretical distributions rather than empirical data were

used to validate the fixed sample size plans. The reason for not using empirical data sets

is related to the between-study heterogeneity discussed above. With high between study

heterogeneity, it is not at all clear which empirical data sets should be used to provide an

estimate of the empirical variance in transit times. In addition, there is the concern that

variation in transit time measurements between studies reflects underlying bias arising from

experimental techniques .[42] Therefore, our approach of specifying the extremes of transit

time (0 and 15 seconds), recognising the common mean across studies of 6 seconds, and

fitting an appropriate distribution to these is reasonable under the circumstances. Another

approach, which we may employ in future work, would be to carry an independent meta

analysis of transit times reported in empirical data, then to use a homogeneous subset of

these as to parameterise a distribution for validating sampling plans. Unfortunately, this

undertaking was not possible during the time constraints of this masters project.





Chapter 6

Stochastic modelling of particle transit

times through capillary regions

6.1 Introduction

In the previous chapters, a logistic model describing how the transit time of a particle of

oxygen through the brain differed with respect to time, blood vessel type and brain region,

was developed (Chapter 3). The model was then fitted to data and the results used to examine

the likely empirical distribution of transit times (Chapter 4). These results were then used

to examine the question of how many experimental replicates would be required to detect a

clinically significant change in transit time. The preceding chapters neglect to examine one

important variable in transit time—the extraction of an oxygen particle by the brain before it

fully transits through the system. The extraction process is linked to the question of clinically

significant changes in transit time because there is hypothesised to be increased uptake of

oxygen in situations of demand, leading to a reduction in transit times. This chapter addresses

the effect of oxygen extraction on mean transit time, as predicted by the model developed

in Chapter 3. This chapter is divided into two parts: part one derives formulae giving the

expected effect of extraction on mean transit time. Part two uses stochastic simulation to
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illustrate the effect of oxygen extraction on transit time numerically.

6.2 The expected effect of oxygen extraction on mean tran-

sit time

6.2.1 Background

The process of oxygen extraction from hemoglobin is in essence an acid base chemical

reaction that occurs at the boundaries of blood vessels; understanding the effect of this

process on transit time therefore has precedents in physical chemistry.[19, 43] Foundational

experiments in physical chemistry by J. C. Maxwell showed that gas molecules moved faster

in a smaller space, and there were more interactions between the particle and the contained,

resulting in the product of more energy (heat) as a result of collisions.[44, 45] Importantly,

in such a system, whilst the physical properties of gas particles, the space in which they were

contained, and the heat and pressure in the space are known, the initial position and velocity

of each particle is entirely random.[46] These quantities could only be considered as being

described by some probability distribution. There are obvious parallels to investigating the

behaviour of oxygen particles traveling in the vascular system and extracted by interactions

at its boundaries. The vascular system is a confined space, transit time in smaller vessels

is faster (see Chapter 3), and the initial state of the system (locations and velocities of

oxygen particles) is unknown in many experiments.[22, 19] Probabilistic expressions for

these quantities are now derived. First, a probabilistic representation of the model developed

in Chapter 3 is developed, which permits describing the initial velocities and position of

particles in the absence of prior information. Then, probabilistic expressions for the effect of

extraction upon these initial transit times are developed.
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6.2.2 A probabilistic model of expected transit time

The probability that a particle of oxygen to travel through a region of the brain has a particular

transit time at time t, tT T (t), is PtT T (t). The sum of all theoretically possible values of PtT (t)

is

∞

∑
tT (t)=0

PtT (t) = 1. (6.1)

Given that the brain is composed of Q different vessel types, each with different transit times,

such that

PtT (t) =
Q

∑
q=1

ptq(t) (6.2)

(see eqn. 3.10), it follows that the sum of all the probabilities of a particle being in region q

and having a particular transit time is

∞

∑
tq(t)=0

ptq(t) = 1. (6.3)

As described in Chapter 3, the transit time through the brain tT (t) is the sum of transit times

through the respective regions, tq(t). As a particle cannot be in two regions simultaneously,

ptq(t) is equal to either 1 or 0. For a single oxygen particle, its expected transit time in region

q at time t is therefore

∞

∑
tq(t)=0

ptq(t)tq(t) = 0+1× t̄q(t) = t̄q(t). (6.4)

This is in keeping with the results from the deterministic model outlined in Chapter 3.
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Consider now the transit time and location of two particles i = 1,2 at time t. Assuming

that no particle can occupy exactly the same space in region q at the same time, the transit

time of any two particles cannot be the same. It follows that, if tqi gives the transit time of

particle i, then

∞

∑
tq1(t)=0

ptq1(t)tq1(t)+
∞

∑
tq2(t)=0

ptq2(t)tq2(t) = t̄q1(t)+ t̄q2(t), (6.5)

and hence that the overall expected transit time in a two particle system is

∞

∑
tq1(t)=0

ptq1(t)tq1(t)+
∞

∑
tq2(t)=0

ptq2(t)tq2(t) = 0+
1× t̄q1(t)+1× t̄q2(t)

2

= t̄q(t). (6.6)

However, this expression does not account for which region each particle occupies. Since

particle i may be in only one of q = 1, . . . ,Q regions, let M define the set of values in 1, . . . ,Q

that may contain i, and let N denote the subset of M that does not contain i. Subsequently,

define the step function,

Q

∑
q=1

ptqi(t) =


1 for q /∈ N

0 otherwise.
(6.7)

Applying (6.7) to the case of i = 1,2 particles in q = 1,2 regions, the expected transit time

of particle i given that it is in region q is

∞

∑
t11(t)=0

pt11(t)t11(t)+
∞

∑
t12(t)=0

pt12(t)t12(t)+
∞

∑
t21(t)=0

pt21(t)t21(t)+

∞

∑
t22(t)=0

pt22(t)t22(t) =
pt11 t̄11(t)+ pt12 t̄12(t)

2
+

pt21 t̄21(t)+ pt22 t̄22(t)
2

= t̄1(t)+ t̄2(t). (6.8)
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It follows from (6.8) that the general form for the expected average transit time of n particles

in Q regions of the brain at a time t = 0 in some experiment, t̄T (t)(1), is

t̄T (t)(1) =
Q

∑
q=1

n

∑
i=1

[
ptqi(t)tqi(t)

n

]
=

Q

∑
q=1

t̄q(t). (6.9)

Equation (6.9) constitutes the first raw moment of the distribution of particles with respect to

region and transit time. The second raw moment, t̄T (t)(2), takes the form

t̄T (t)(2) =
Q

∑
q=1

n

∑
i=1

[
ptqi(t)tqi(t)

n

]2

=
Q

∑
q=1

t̄2
q(t). (6.10)

Given the binomial nature of the distribution (a particle is either in a place and has a particular

transit time or not), the second central moment or variance of the distribution can be written

[47],

σ
2
(t) = t̄T (t)(2)− [t̄T (t)(1)]

2. (6.11)

Equations (6.9) and (6.11) give the distribution of particles with different expected transit

times across different regions of the brain. The effect of extraction of these oxygen particles

in the capillaries upon these initial expectations will now be examined.

6.2.3 The effect of particle extraction on the probability of expected

transit time

Previously, this thesis has omitted considering the effect of oxygen metabolism on transit

time, but the utility of fMRI as an imaging modality, as discussed in Chapter 2, relates to

its ability to detect oxygen being used by the brain. Extraction of an oxygen particle will

reduce its transit time, so (6.3) needs to be modified to reflect this. Let the fraction of oxygen
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particles extracted at time t be ε(t), such that (6.3) is re-written as,

∞

∑
tq(t)=0

ptq(t)tq(t)(1− ε(t)) = t̄q(t)(1− ε(t)), (6.12)

implying the expected transit time is reduced by ε(t). Specifically,

∞

∑
tq(t)=0

ptq(t)(1− ε(t))<
∞

∑
tq(t)=0

ptq(t). (6.13)

The above inequality shows that taking into account extraction will reduce the transit time.

Importantly, however, oxygen extraction only occurs in the capillaries, and not in other

regions, with the possible exception of some small pre-capillary arterioles.[48] The amount

of extraction in these arterioles is not considerable enough to be taken into consideration

in this probability model, but is addressed later in the discussion of possible future work

arising from this thesis. The permeability of red blood cells across the capillary wall occurs

for two reasons. First, the capillaries are incredibly small in comparison to the other types

of vessels. The diameter of the average capillary is similar in diameter to that of a red

blood cell. The smallest capillaries tend to deform the red blood cells as they move through

these small vessels.[19] As opposed to when it is in other blood vessels, it is not possible

for a red blood cell to move through a capillary without making contact with cell wall,

hence, increasing its chance of perfusion. Further, the capillaries do not have the smooth

muscles surrounding the inner layer of endothelial cells found that is present in the arteries

and arterioles, and to a lesser extent the veins and venules. This structure performs as a

mechanism that allows the perfusion rate to be kept as a constant, which contributes to what

is known as the auto-regulatory system.[22, 49] An example of one of these mechanisms

involves a cell type in the capillaries called pericytes, which causes the capillaries to con-

strict under high levels of O2 and to dilate under low levels of O2, with obvious effects on

extraction probability.[19] Hence, it is necessary to distinguish the overall proportion of
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particles extracted at time (t), ε(t), from the probability of extraction of a given particle pε(t).

Since extraction only occurs in the capillaries, let C be the subset of values of Q where q

is a capillary, so that

ε(t) =


pε(t) for q ∈C

0 for q /∈C.
(6.14)

Applying (6.14) to (6.4) gives

∞

∑
tq(t)=0

ptq(t)tq(t)(1− ε(t)) = 0+ ptctc(t)(1− ε(t)) = t̄c(t)(1− pε(t)), (6.15)

where c is an element of the set of capillaries C. The brain’s auto regulatory mechanisms

ensure that the brain will not allow the possibility of the particles to be extracted to the point

of cerebral hypoxia, which would lead to loss of consciousness and ultimately death. This

system allows for the conservation of oxygen particles necessary to allow the system to

function properly. So, given equation (6.6) the mean transit time for the case of two particles

with the extraction process is amended to become,

∞

∑
tq1(t)=0

ptq1(t)tq1(t)(1− ε(t))+
∞

∑
tq2(t)=0

ptq2(t)tq2(t)(1− ε(t)) =
t̄c1(t)+ t̄c2(t)

2
(1− ε(t))

= t̄c(t)(1− pε(t)). (6.16)

It follows from (6.16) the general form for the expected average transit time of n particles in

Q regions of the brain at a time t, t̄T (t), given (6.14) reduces to

t̄T (t) =
C

∑
c=1

n

∑
i=1

[
ptci(t)tci(t)(1− ε(t))

n

]
, (6.17)
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where the set of capillaries C is denoted by c = 1,2, . . . ,C. However, a capillary can only

contain one red blood cell at a time, and the total number of particles n in the brain will be

greater than the number of capillaries, C. Therefore, (6.17) further simplifies to

t̄B(t) =
C

∑
c=1

C

∑
c=1

[
ptcc(t)tcc(t)(1− ε(t))

C

]
=

C

∑
c=1

t̄c(t)(1− pε(t)), (6.18)

The number of capillaries, C, is obviously very important in determining the number of

extractions. The next section illustrates the effect of the number of capillaries on transit time

using stochastic simulation.

6.3 Simulating particle extraction using Gillespie’s algo-

rithm

6.3.1 Overview

This section develops a stochastic simulation process to model the extraction of particles

in the capillary regions. The simulation will produce an expected transit time for a particle

given the capillary density in different regions. The work is based on a variant of Gillespie’s

stochastic simulation algorithm called the partial-propensity stochastic simulation algorithm

[50]. This algorithm deals with the conditional probabilities involved by first assigning

particles to their respective vessel regions, which have different number of vessels, and then

determines the fate of each particle.

The algorithm reduces the computational labour needed to update the total rate of ex-

traction by computing the parameters of the region at each new iteration. This process of

incrementally updating the total rate would be very inefficient.[50] Instead, the propensities

for a particle’s extraction are declared globally in the code before the algorithm is run. This
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does requires prior theoretical work before implementing the algorithm. From this questions

can be addressed about the stochastic process of particle extraction of the expected transit

times. From this foundation we can pose important questions that relate back to the previous

work in other chapters: Are the transit times longer in the regions of smaller or larger capillary

numbers? Is there a significant effect of extraction on transit time in regions with different

capillary densities? Is there a significant difference between extracted and non extracted

particle transit times? How much variation is there in the transit time for particles in different

regions with different capillary numbers?

6.3.2 Implementing the algorithm

Gillespie’s algorithm is an event-based algorithm, where the time period for an event to

occur is first calculated, and then the event that actually occurs during the time interval is

determined. Pseudocode given in Table 6.1 outlines these basic steps. R 3.4.3 for Mac OSX

was used to run the simulation, and the actual code used to run the algorithm can be found in

Appendix 2.

Table 6.1 Pseudocode showing the sequence of events for one iteration of the algorithm.

I Enumerate the events a = 1,2, . . . ,A that can occur
during one iteration of the algorithm

II Declare the rates of each event, and associated propen-
sity scores

III Determine the time interval necessary for at least one
event to occur using pseudo-random number u0

IV Generate a second pseudo-random number u1 to test
which event occurs

V If u1 < than the propensity for event a, event a occurs
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Some fundamental biological assumptions were relied upon to implement the algorithm.

First, the convention is fMRI modelling is to take the probability of extraction, pε(t) as being

constant. This is because the delivery of oxygen to the brain through the capillaries is tightly

regulated. The brain is extremely susceptible to cell death (infarction), which can occur with

very slight differences between supply and demand for oxygen. Clinically, the effects of

infarction in the brain are seen in stroke. To avoid infarction, the central chemoreceptors

of the brain regulate the flow of new, oxygenated blood to the brain, effectively meaning

that the number of oxygenated red blood cells in the brain, n, is conserved. This means

that the probability of extraction does not vary with supply and demand. Furthermore, the

probability of extraction is regarded as fixed, because the volume of capillaries is so small

(the diameter of one red blood cell) that variation in the physical characteristics of capillaries

is so minute that it does not contribute meaningfully to variation in the extraction probability.

This allowed the algorithm to be simplified from the standard approach described in Table

6.1. Specifically, the events that could occur at each iteration and the associated propen-

sity scores could be treated as global constants, rather than being recalculated at each iteration.

The number of particles in the capillaries, n, and the number of capillaries were both

taken to be equal to C as per (6.18). The capillaries were assigned to r = 1,2, . . . ,R regions,

such that

n =C =
R

∑
r=1

nr, (6.19)

with the number of oxygen particles in each region also being nr and the rate of oxygen

extraction in each region being given by

pεnr. (6.20)
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The probability of k extractions in region r, pkr was taken to follow a Poisson distribution,

such that

pkr =
exp−pε nr(pεnr)

k

k!
. (6.21)

The events possible at each iteration of the algorithm are:

• Extraction in one of R regions; or

• No oxygen extraction.

Since the algorithm only allows for one event per iteration, the events at each iteration are

mutually exclusive and independent. The probability of one extraction in any region is

therefore governed by the rate

R

∑
r=1

pεnr. (6.22)

As a consequence of (6.22), the rate parameter governing the probability of no extraction in

one iteration is

R

∑
r=1

nr −
R

∑
r=1

pεnr. (6.23)

The total rate is defined as the sum of all rates and is

R

∑
r=1

pεnr +(
R

∑
r=1

nr −
R

∑
r=1

pεnr) =
R

∑
r=1

nr = n. (6.24)

The length of one iteration, ∆t, is defined as the time interval in which one event can occur

(Step III in Table 6.1). This time interval is determined by the relation

∆t =
−log(uo)

n
, (6.25)
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where uo is a uniformly distributed pseudorandom number. All numbers generated by R’s

built in runif() function are technically pseudorandom rather than truly random, but this

causes no practical difficulties in practice, as the number of possible values generated by R is

sufficiently large as to approximate true randomness in most applications.

To determine which event occurred during interval ∆t, a second pseudo-random number,

u1 was drawn and compared iteratively to the propensity scores; the propensity scores are

the ratio of governing rates to total rate, (6.24). Since the extraction events are mutually

exclusive, if

u1 <
pεnr

n
, (6.26)

an oxygen particle was extracted in region 1; if

u1 <
pε(n1 +n2)

n
, (6.27)

an oxygen particle was extracted in region 2; and if

u1 <
pε(∑

R
r=1 nr)

n
, (6.28)

an oxygen particle was extracted in region R. If

u1 ≥
pε(∑

R
r=1 nr)

n
, (6.29)

no oxygen extraction events occurred in the interval ∆t. It was considered that on average a

particle would take 5∆t to fully pass through a capillary. Thus the algorithm outlined above

was implemented 5 times for each capillary.
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Results are presented for simulations using R = 3, where region r = 1 contains 10 capil-

laries, region r = 2 contains 50 capillaries, and region r = 3 contains 100 capillaries. The

value of the extraction probability, pε was derived from empirical measurements suggesting

that the proportion of particles extracted is 20% [16]. A value of pε = 0.04 per time step

was shown to result in an overall proportion of extractions of k/n = 0.20 by solving (6.21)

algebraically for time period 5∆t. The propensity scores governing the extraction events are

given in Table 6.2.

Results of the simulation were analysed using R. The mean transit times of extracted

particles in regions 1, 2 and 3 were compared using one-way analysis of variance (ANOVA).

The mean transit times of extracted versus non-extracted particles were compared using a

Welch two-sample t-test. Significance was assumed at p < 0.05.

6.3.3 Results

There were no significant differences in mean transit time between regions. Figure 6.1

shows the distribution of transit times for extracted particles in each region. There was

also no significant difference in mean transit times for extracted and non-extracted particles.

Figure 6.2 shows the distribution of transit times for all extracted particles and non-extracted

particles, and Figure 6.3 shows the distribution of transit times for extracted particles in each

region compared to non-extracted particles.

6.4 Discussion

Neuro-imaging using the fMRI technique relies on the extraction of oxygen particles from

hemoglobin producing electro-chemical changes that results in contrasting image properties
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Table 6.2 Propensity scores for extraction events in R = 3 regions, given pε = 0.04 per time
step.

Region Number of capillaries Extraction
rate

1 10 .0025
2 50 .0125
3 100 .025
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Fig. 6.1 Distribution of transit times for extracted particles in each region. The bottom of the
boxes indicate the 25th percentile and the top of the boxes the 75th percentile; the whiskers
show the 10 and 90th percentile. The dots above the whiskers represent the outliers.

between capillary regions with more and less extraction. If, as is argued by researchers,

the extraction probability remains constant as an important part of the brain’s regulatory
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Fig. 6.2 Distribution of transit times for non-extracted (survived) particles vs. all extracted
particles. The bottom of the boxes indicate the 25th percentile and the top of the boxes the
75th percentile; the whiskers show the 10 and 90th percentile. The dots above the whiskers
represent the outliers.

mechanisms against hypoxia, it might be expected that the number of capillaries per re-

gion would be the most important factor in determining the relative frequency of extraction

events in different regions. The calculations provided in the first part of this chapter provide

an algebraic basis for this expectation, and this is reflected in the parameterisation of the

stochastic simulation in the second part of this chapter. Table 6.2 shows that the propensity

for extraction events is larger in regions with more capillaries. If on average the transit

time through the capillary was equal to 5∆t, the average time of extraction might be 2.5∆t,



66 Stochastic modelling of particle transit times through capillary regions

10 50 100 Survived

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

Mean transit time

Region size

Ti
m
e

Fig. 6.3 Distribution of transit times for extracted particles in each region compared to
non-extracted (survived) particles. The bottom of the boxes indicate the 25th percentile and
the top of the boxes the 75th percentile; the whiskers show the 10 and 90th percentile. The
dots above the whiskers represent the outliers.

suggesting that there might be significant differences in transit time between regions with

greater and lesser numbers of extraction events.

Results from the simulations conducted in this chapter showed no evidence that more

extractions resulted in lower transit times. This suggests that despite the heterogeneous
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distribution of capillaries, the density of capillaries has little effect on mean transit time.

There could be several reasons for this. The stochastic nature of the extraction process might

mean that the random times at which extraction occurs results in no difference in mean

transit time. On the other hand, it could be that transit times are so short in the capillaries

(approaching zero seconds, according to [32]) that differences in the transit time of extracted

and non-extracted particles are so small that they do not significantly effect the mean. These

results suggest that detecting significant relationships between transit time and changes in

fMRI images is not straightforward, and requires very large sample sizes, considering the

different strata, sample sizes, and sampling methods. A detectable change in oxygenation

level in the brain is not easily traced backed to a response to a stimulus, given these results.

The possibility that the BOLD signal, detected by fMRI, might not be linked to increasing

transit times in response to a stimulus raises important questions for the clinical and research

use of fMRI. The effect of autoregulation within the brain on transit times needs to be further

investigated. Canonically, the larger the BOLD signal, the more confidence a researcher

might have in the stimulus being the casual factor, but this line of thinking is not supported

by these results.





Chapter 7

Concluding remarks and future work

7.1 Overview

This thesis made a number of new contributions in the field of fMRI modelling research. It

re-examined the phenomenon of cerebral transit time using established (differential equa-

tions) and more novel techniques (sampling techniques more commonly associated with

epidemiology and ecology). A number of avenues for future work and several implications

for experimental fMRI research were identified. This is pleasing considering that the scope

of the work contained within this project is relatively small in scale, in contrast to diverse

and large amount of growing research in the field.

There were four primary areas of focus in this thesis, each with their own unique problems,

and in each of which the thesis made new contributions or proposed further areas for future

research. The first area of focus was the CVP (central volume principle), which underlies

many important fMRI models. Findings related to this area of focus are included in Chapters

3 and 6 of the thesis. The second area of focus was applying my findings regarding the CVP

to evaluating the sample sizes required for reliable fMRI experimental studies. This area of

focus is examined in Chapters 4 and 5. The final area of focus was exploring the effects that
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extraction of oxygen particles in the brain might have on the results presented in previous

chapters. This work is included in Chapter 6. Contributions made by each Chapter in these

areas are now described.

7.2 Contributions of each chapter

Chapter 3 made two new contributions relating to the CVP. The first contribution of Chapter

3 was demonstrating that the traditional form of the CVP, given in equation (2.1) does not

account for different spatial distributions of different types of blood vessels. The CVP was

first developed experimentally from ground breaking research in physiology and fluid dynam-

ics dating back to over 100 years, but which dealt with the pulmonary and systemic, rather

than cerebral, circulation.[31, 32] Today, it is understood that the intricate and complicated

structure of the cerebral cardiovascular system is quite different to that of the systemic and

pulmonary circulations. For example, a relatively larger proportion of the cerebral circu-

lation is comprised of small-volume capillaries, which will make a correspondingly small

contribution to transit time compared to the larger diameter arteries and veins that comprise a

smaller part of the cerebral circulation. Therefore, the cerebral circulation is comprised of a

spatially heterogeneous distribution of blood vessel types. It follows that the canonical CVP

will not accurately model transit time in the cerebral circulation. Chapter 3 also showed that,

importantly, spatial heterogeneity of blood vessels will also result in temporal heterogeneity

in transit times for a given oxygen particle. If a particle moves through different vessel types

with different volumes, it will have a different transit time in each (short in the small volume

capillaries, and long in the large volume arteries). These findings led to the next contribution

of the chapter.

The second novel contribution of Chapter 3 was developing a variant of the CVP that

accounts for the effect of spatially and temporally heterogeneous blood vessel volumes on
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transit time. This model was based on that of Waters et al.[1], and incorporated a linear

form of the mean crowding–mean density relationship into the logistic differential equation

to account for the effect of spatial heterogeneity. This model is given in equation (3.15).

The idea of using a differential equation to express transit time as a function of time arose

from the temporal heterogeneity noted above. The model was based on the assumption

that as a particle changed location spatially with respect to time, the change in its expected

transit time with respect to the environment (blood vessel volume) at each moment could be

expressed by a derivative. Using this model, it was straightforward to demonstrate the effect

of a heterogeneous distribution of blood vessels on mean transit time, as shown in equation

(3.20). For example, in overdispersed systems with more small-volume vessels (such as

brain, which has a preponderance of capillaries), the mean transit time was smaller. Whilst

the effect of spatial heterogeneity on dynamical systems, and the use of mean crowding to

account for these effects, is common in epidemiology and ecology [1, 51, 36], it has not

previously been employed in fMRI modelling.

In summary, after identifying problems with the application of the traditional CVP to

modelling cerebral oxygen transport, Chapter 3 developed a new model for oxygen particle

transit time in the brain that appeared to be more realistic, thus making several new contri-

butions to fMRI research. Two possible limitations of the research conducted in Chapter 3

can be identified. First, the focus of the model was macroscopic differences in blood vessel

volumes, in the sense that it was captured spatial heterogeneity between vessel types, but not

within them. Arguably, microscopic variation in some vessel types (particularly the capillar-

ies) might be more important than macroscopic variation in determining clinically significant

variations in transit time. The model could be further improved to address this possibility by

incorporating both microscopic and macroscopic variability in blood vessel volumes. On

the other hand, a key strength of my model is that it lacks the complexity of some other
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models involving partial differential equations.[28, 35] For that reason, mine might be more

accessible to clinicians interested in fMRI, and this limitation might be a strength in some re-

spects. Second, the model, which is deterministic, did not examine what effect the stochastic

process of oxygen extraction in the capillaries might have on its predictions of transit time.

This issue was, however, examined in Chapter 6 using stochastic modelling. The conclusions

drawn in Chapter 6 are discussed in more detail below, but it is worth noting here that

oxygen extraction had no significant effect on mean transit time. Therefore, not considering

the effect of oxygen extraction on transit time in this chapter is not a very important limitation.

The difficulties that spatial heterogeneity poses for sample size estimation and exper-

imental design are well recognised in disciplines such as ecology.[52] Chapters 4 and 5

explored the adequacy of sample sizes in fMRI commonly used in fMRI experiments using

methods developed in ecology and epidemiology.[53, 52] Chapter 4 developed an enumer-

ative sampling plan based on the mean crowding–mean density relationship to determine

the number of measurements required to estimate mean transit times with a pre-determined

level of precision. Empirical data from Grubb et al.[39] were used to parameterise the mean

crowding–mean density relationship. It was expected, from the literature reviewed in Chapter

2 and Chapter 3 that the parameters best fitting the mean crowding–mean density relationship

to the Grubb data would indicate overdispersion. Surprisingly, given the heterogeneous

distribution of blood vessels in the brain, the parameters that maximised the fit of the model

to the data indicated that transit times were uniformly distributed (see Figure 4.1). This result

has obvious implications for fMRI research. The foundational experimental study by Grubb

et al. contains one of the largest sets of measurements included in the neuroimaging literature,

and is one of few that specifically aims to estimate transit time. The fact that its data are

uniformly distributed has not, to the best of my knowledge, been previously remarked upon

in the literature. This finding contradicts common claims about fMRI research (i.e. that
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transit times are inherently variable), and it is notable that many of the studies reporting

heterogeneity in transit times use much smaller sample sizes than Grubb et al., and estimate

transit time as a quantity that is autocorrelated with BOLD signalling, and hence important

for image processing, rather than as an outcome measure in its own right. The results of

Chapter 4 give reason to re-examine assertions about the heterogeneity of cerebral transit

times commonly made in the literature. Chapter 4 also made another novel contribution as a

side result. It showed that enumerative sampling plans on the mean crowding–mean density

relationship are mathematically intractable for uniformly distributed variables see equation

(4.4). To the best of my knowledge, this is the first time that this result has been shown in the

literature. Whilst is has limited utility in fMRI research, it will have implications for fields

where this sampling methodology is commonly used, such as ecology.[52]

The inappropriateness of the enumerative sampling plan methodology investigated in

Chapter 4 for uniformly distributed data required exploring a different approach to examine

the effect of transit time distributions on required sample size for fMRI experiments. Chapter

5 was developed in response. This chapter validated the performance of fixed sample sizes at

detecting clinically significant changes in transit time using simulated, rather than empirical,

data. The simulated data were, however, based on empirically derived parameters, and the

fixed sample sizes evaluated corresponded to the sample sizes commonly employed in fMRI

experiments. Most experimental designs in fMRI experiments are based on the assumption

that the primary cause of detectable changes in the BOLD contrast arise from neural activa-

tion in response to a stimulus. This clinically significant change in the BOLD, theoretically,

might also be reflected in clinically significant increases in transit time. Therefore, the fixed

sample size plans were evaluated for their ability to detect clinically significant increases in

mean transit time (> 6 seconds) with an acceptable level of precision (0.10). None but the

largest sample sizes tested could accurately identify an increase in mean transit time, and a
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considerable number of outliers (extreme value estimates) generated using all the sample

sizes of interest. The results shown in this chapter reinforce the considerable concern in

the fMRI field that the sample sizes commonly used in the field give unacceptable numbers

of false positive results.1 The results in this chapter show that a minimum sample size of

16 in fMRI studies, as recommended by most clinicians[40], would be better than 5 or 10,

and would achieve the required precision of 0.10 most of the time (see Figure 5.1). On the

other hand, even sample sizes of 20 still made a substantial number of mis-classifications

(see figure 5.2). Therefore, while the results in this chapter support some of the criticisms

previously made of experimental designs in fMRI research, they also suggest that measures

recommended to improve the quality of experimental studies do not go far enough.

The work preceding Chapter 6 developed a deterministic model that could describe

how the mean transit time of oxygen particles in the brain changed with blood vessel type,

spatial area, and changes over time, but neglected to introduce particle extraction into the

analysis. Furthermore, the effect of microscopic and stochastic variability on the predictions

of the model were neglected. Chapter 6 develops a stochastic model that incorporates these

effects and demonstrates their expected impact on transit time numerically. This chapter was

divided into two parts. The first part initially incorporated the effects of stochasticity into

the logistic model developed in Chapter 3, and then extended this to include the effect of

particle extraction probability on the mean transit time of a particle. The second part of the

chapter used stochastic simulation to illustrate the effect that oxygen extraction, which only

occurs in the capillaries, has on transit time. The results produced showed no significant

changes in transit times between regions with more capillaries to those with less. This finding

supported the unexpected finding in Chapter 4 than an empirical data set of transit times was

uniformly distributed. If factors such as oxygen extraction and heterogeneous distributions

1False positive results are those where a clinically significant change in mean transit time is detected, but in
fact has not occurred.
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of blood vessel volumes have little effect on transit time, variability in transit time cannot be

the main factor causing difficulties in drawing reliable inferences from fMRI experiments.

As shown in Chapter 5, sample sizes in many experiments continue to be inadequate for

drawing reliable inferences, even where there is little heterogeneity in transit times. The main

contribution of this thesis may well lie in posing questions about the assumption of gross

variability in transit times as a source of error in fMRI experiments. This finding, in turn,

leads to a number of avenues for future research relating not to the sources of variability in

fMRI, but why such an anatomically heterogeneous system as the cerebral circulation should

yield homogeneous transit times and constant probabilities of oxygen extraction.

7.3 Future work

The results in Chapters 3 to 6 suggested many opportunities for future research. The main

avenues of future research will relate to reconciling the conflicting findings of this thesis.

According to the mathematical model presented in Chapter 3, the CVP does not accurately

predict transit time in a system with many small vessels. If the capillaries, for example,

were to be distributed in higher numbers than other vessel types should produce a shorter

expected transit time. This expectation was not reflected in results presented in Chapter 6,

where mean transit time did not vary between systems with different numbers of capillaries.

Similarly, analysis of a foundational data set in Chapter 4 suggested a uniform distribution

of transit times. Mathematics and physiology both suggest some possible explanation for

these conflicting findings. More than a century ago, Stewart postulated that given that the

volume of capillaries is infinitesimally small, the transit time through the capillaries must be

close to zero.[32] This observation suggests a mathematical explanation. If the differences in

volume between capillaries are themselves infinitesimally small, this suggests that measuring

meaningful differences in mean transit time between different regions might be almost impos-

sible with current technology. Research in physiology suggests another explanation for these
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findings. Given that the brain is particularly susceptible to damage from ischaemia (lack

of blood flow), it possesses sophisticated mechanisms (such as the central chemoreceptors)

for regulating blood flow. It is easy to see how the demand for constant blood supply might

lead to uniformity in transit times, functional processes that regulate uniform flow times to

account for any spatial heterogeneity. This lead me to conclude that if the results of this

research project are correct and there is uniformity in transit time, this must be arise from

either the brain’s physiological regulation of blood flow, infinitesimally small differences in

transit times beyond the measurement capabilities of current tools, or a combination of both.

This hypothesis will need careful investigation by future researchers in light of the results

presented in this thesis. In general, however, this finding supports the conclusions of other

researchers that much more needs to be understood at a microscopic level about the behaviour

of the systems that regulate blood flow to the brain before the results of mathematical models

and experimental fMRI studies will be able to be reconciled.

Despite the fact that some results in this thesis contradicted frequently employed assump-

tions in fMRI research about the heterogeneity of transit times, the thesis nonetheless has

important implications for interpreting experimental studies that employ these assumptions.

The results presented in Chapter 5 showed that the vast number of sample sizes employed

in fMRI experiments are inadequate for detecting changes in transit time that have been

deemed to be clinically significant. Admittedly, the evaluation presented in Chapter 5 had

the important limitation of relying on simulated data to evaluate the sampling plans. Un-

fortunately, due to the small sample sizes uses in many empirical studies, the performance

of the sampling plans was unable to be evaluated using empirical data sets. This is not a

limitation unique to this thesis, but to attempts to develop and validate new experimental

protocols in the fMRI field as whole. Part of this is because the observable measurements of

transit times are not in the orders of magnitude similar to phenomena studies in ecology and
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epidemiology, and may in fact be infinitesimal, as noted above. There are concerted efforts

to improve this aspect of the field with suggestions of minimum sample sizes and the use of

meta-analysis, but even with the latter approach, it will be some time before enough large

size studies are available to limit type I and II errors in meta-analyses.[54] The implications

of the results presented in Chapter 5 for sample size selection in experimental fMRI studies

could be meaningful in future research.

A further direction for future work is improving the algorithm presented in Chapter 6.

Possible improvements that would make the algorithm more realistic would be allowing

for multiple events (such as the extraction of multiple particles in multiple blood vessels)

to occur at each time step. This would, however, require a new approach than Gillespie’s

algorithm, which is fundamentally based on calculating the propensity for single events,

then occurring which event (non events) occur in a given time step. Exploring agent based

modelling frameworks to simulate oxygen transport and extraction in the brain could be a

useful avenue of future research in developing more realistic stochastic simulations than the

one developed in Chapter 6.

7.4 Conclusion

This thesis used several approaches, both mathematical and statistical, to address known

issues in fMRI modelling. I drew from applications studies outside of fMRI in developing

my methods, hoping that the use of novel methods might yield novel results. Alternatively,

at least I would show that novel methods produced similar results to what has already been

reported in the literature. In the end, I believe that this thesis did make several new contribu-

tions to knowledge, as summarised above.
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The most important of these contributions was, in my opinion, highlighting the im-

portance of the auto-regulation process in the brain as a possible mechanism for ensuring

homogeneous blood flow and transit times. Whilst infinitesimally small differences in transit

times may present an alternative explanation for the results presented in this thesis, I believe

that further collaboration between physiologists and modellers is a better avenue for future

research. It is always possible to improve measurement tools, but if the brain is fundamentally

governed to ensure uniform blood flow and transit times, improving experimental measure-

ments will not help—a precise measurement is not going to detect something when there is

nothing to measure. While Chapter 5 makes important contributions regarding calculating

sample size for fMRI research carried out in the current paradigm, the results shown in

Chapters 4 and 6 suggest the need for paradigm change. Despite the vast literature exploring

the nature of blood flow dynamics,[29, 31, 32, 25, 24] there is nothing close to any sort

of consensus on how blood flow responds to stimuli. In response to this confusion, fMRI

research characteristically treats cerebral blood flow as being a “black box” where a single

input (an oxygen particle) is linked to a single output (extraction of the oxygen particle

or not), but anatomical and physiological processes in between are ignored because they

are poorly understood. This scientific approach is only tenable up until the point where it

begins to be contradicted by further experimental evidence. The historical trend in most

scientific research fields is to undergo a series of paradigm shifts regarding the fundamental

principles of the objects of study and the appropriate methods for interpreting meaningful

results.[55] When a science is in its infancy, which neuroimaging is, models need to draw on

assumptions (often from other disciplines), which may or may not be realistic. Over time,

however, experimental evidence arises that indicates that these assumptions and models need

to be reevaluated. The CVP, foundational to the models of the BOLD contrast and fMRI, was

shown in Chapter 3 of this thesis to be unrealistic. A reliable understanding and measurement

of transit time is vital to determining what produces the BOLD signal, an essential feature
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undergirding the experimental design in all fMRI studies. Despite developing an improved

model for transit time in Chapter 3, results presented in Chapters 4 and 6 suggest that the

importance of the improved model will depend on resolving the fundamental physiological

issue of just how much variability there is in transit time, given the brain’s sophisticated

auto-regulatory mechanisms. It was a focus of this thesis to both evaluate the quality of

current practices and assumptions in fMRI research, and to provide new models and tools to

improve the work carried out in the field. The results contained in Chapters 3 to 6 present

numerous avenues for future research in furthering these goals.

7.5 Summary

In summary, this thesis used the mean crowding–mean density relationship to show the

theoretical underpinnings of many fMRI models are unrealistic, and in particular to illustrate

how the unrealistic assumptions of the CVP may influence the results of modelling studies.

Chapter 5 then showed how, irrespective of the spatial distribution of blood vessels, most

fMRI experiments employ sample sizes too low to make reliable inferences. Finally, Chapters

4 and 6 suggested far more homogeneity in transit times than expected by employing

the assumptions typically used by fMRI modellers. This suggested the need for more

physiological research exploring the regulation of oxygen transit time in the brain, in order

to make findings from fMRI experiments more relevant to clinical practice.
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Abbreviation Definition

Asl(fMRI) Arterial spin labeling fMRI

CAT Computed axial tomography

CBV Cerebral Blood Volume

BOLD Blood Oxygenation Level Dependant

CMRO2 Cerebral Metabolic Rate Oxygenation

CVP Central Volume Principle

fMRI functional Magnetic Resonance Imaging

HRF Haemodynamic Response Function

IDP Indicator Dilution Principle

MRI Magnetic Resonance Imaging

OEF Oxygen Extraction Fraction

PET Positron Emission Tomography

ROI Region of Interest

F Blood flow

t̄ Mean transit time

t̄q Mean transit through any vessel region

t̄B Mean transit time through the brain

ε(t) Oxygen extraction probability

Vq Volume of blood in vessel region

x∗ Mean crowding



Appendix B

Appendix 2: Code for simulation of fixed

sampling plan in chapter 5

MTT =100

sim_pop <-randomLHS(MTT ,1)

mean_pop <- matrix(0,MTT ,1)

for(i in 1:MTT){mean_pop[i] = qunif(sim_pop[i],1,15)}

fake_pop <- matrix (0,1000,MTT)

for (i in 1:MTT){

Mean_tt = mean_pop[i]

Scale_tt =0.5

Rate_tt = 1/Scale_tt

Shape_tt =Mean_tt/Scale_tt

fake_pop[,i]= rgamma (1000, Shape_tt, Rate_tt)}
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Iterations = 100 # how many times to run sampling plan

sample_sizes=c(2,5,10,15,20,25) # fixed sample sizes to test

n_plans <-length(sample_sizes)

results <-matrix (0,(n_plans*MTT*Iterations ),6)

colnames(results)<-c("Sample␣size","Data␣set","Iteration","Mean␣est","Var␣est","D␣achieved")

results [,1]<-rep(sample_sizes , each=MTT*Iterations)

results [,2]<-rep(rep(seq(1:MTT),each=Iterations),n_plans)

results [,3]<-rep(seq(1: Iterations), MTT*n_plans)

for(s in 1: length(results [ ,1])){

sample_size_collected=results [,1][s]

data_set_used=results [,2][s]

sample_collected <-sample(fake_pop[,data_set_used],sample_size_collected)

results [,4][s]=mean(sample_collected)

results [,5][s]=var(sample_collected)

results [,6][s]=(sd(sample_collected)/sqrt(sample_size_collected ))/ mean(sample_collected)

}

boxplot(results [,6]~results[,1], xlab = "Sample␣size", ylab = "Precision␣acheived")

stop_x <- c(0, 25)

desired_D <- 0.1
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stop_y <- c(desired_D, desired_D)

lines(stop_x, stop_y)

#put in function for real -mean of 6. When est_mean is greater than real_mean give it a 1 if not zero.

threshold_value <- 6

results2 <- matrix(0, (n_plans*MTT*Iterations), 2)

colnames(results2) <- c("True␣mean", "Operating␣threshold")

for(v in 1: length(results2 [ ,1])){

data_set_used=results [,2][v]

true_mean= mean(fake_pop[,data_set_used])

results2 [,1][v]=true_mean

if(results [,4][v]<threshold_value){

results2 [,2][v]=1

}

else{

results2 [,2][v]=0

}

}

big_results <- cbind(results , results2)

Ops_graph <- as.matrix(read.csv("Big_results2_Big.csv"))

OC_curve_2<-nls(Ops_graph[,2]~(1/(1+( Ops_graph[,1]/threshold_value)^b)))

y_2<-(1/(1+( Ops_graph[,1]/threshold_value )^8.413))

OC_curve_3<-nls(Ops_graph[,3]~(1/(1+( Ops_graph[,1]/threshold_value)^b)))

y_3<-(1/(1+( Ops_graph[,1]/threshold_value )^13.514))

OC_curve_4<-nls(Ops_graph[,4]~(1/(1+( Ops_graph[,1]/threshold_value)^b)))
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y_4<-(1/(1+( Ops_graph[,1]/threshold_value )^17.408))

OC_curve_5<-nls(Ops_graph[,5]~(1/(1+( Ops_graph[,1]/threshold_value)^b)))

y_5<-(1/(1+( Ops_graph[,1]/threshold_value )^24.734))

OC_curve_6<-nls(Ops_graph[,6]~(1/(1+( Ops_graph[,1]/threshold_value)^b)))

y_6<-(1/(1+( Ops_graph[,1]/threshold_value )^27.19))
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Appendix 3: Code for stochastic

simulation in chapter 6

c_per_region <-c(10 ,50 ,100)

regions <-length(c_per_region)

capillaries <-sum(c_per_region)

p_ext = 0.04

p_next = 0.96

total_rate = (p_ext*c_per_region [1]+ p_ext*c_per_region [2] + p_ext*c_per_region [3])+(p_next*c_per_region [1]+ p_next*c_per_region [2] + p_next*c_per_region [3])

iterations <- 1000

results <-matrix(0,iterations ,5)

results [,1]<-seq(1,iterations ,by=1)
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colnames(results)<-c("Iteration","Region","Capillary","Transit␣time","Ext")

for(q in 1: iterations ){

propensity1 <-(p_ext*c_per_region [1]/total_rate)

propensity2 <-((p_ext*c_per_region [2]/total_rate))

propensity3 <-((p_ext*c_per_region [3]/total_rate))

t_tot <-0

for(j in 1:5){

dt = -log(runif (1))/total_rate

ext = runif (1)

t_tot <-t_tot+dt

if(ext < propensity1 ){

results [,2][q]<-1

results [,3][q]<-sample.int(c_per_region [1],1)

results [,4][q]<-t_tot

results [,5][q]<-1

break

}

else

if(ext < (propensity1+propensity2 ))

{

results [,2][q]<-2

results [,3][q]<-sample.int(c_per_region [2],1)

results [,4][q]<-t_tot

results [,5][q]<-1

break

}

else

if(ext < (propensity1+propensity2+propensity3 )){
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results [,2][q]<-3

results [,3][q]<-sample.int(c_per_region [3],1)

results [,4][q]<-t_tot

results [,5][q]<-1

break

}

else

{

ext=0 # This reset back to proper value above.

}

results [,2][q]<-4

results [,4][q]<-t_tot

t_tot <-0

}

}
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