2018

Adolescents' self-reported motor assessments may be more realistic than those of their parents

Fleur McIntyre
The University of Notre Dame Australia, fleur.mcintyre@nd.edu.au

Beth Hands
The University of Notre Dame Australia, beth.hands@nd.edu.au

This article was originally published as:
McIntyre, F., & Hands, B. (2018). Adolescents' self-reported motor assessments may be more realistic than those of their parents. British Journal of Occupational Therapy.

Original article available here:
http://dx.doi.org/10.1177/0308022617743681
Adolescents self-report motor assessments may be more realistic than those of their parents’

Running head: Adolescent and parent perspectives of motor competence

Abstract

Introduction. Adolescents’ motor competence influences their physical, social and emotional development. Parent-reported assessments may not be truly representative of their adolescent’s motor difficulties. This study examined the congruency between 133 parent and adolescent dyad reported motor competence. Method. The adolescent-reported Adolescent Motor Competence Questionnaire (AMCQ; ≤ 83) and the parent-reported Developmental Coordination Disorder Questionnaire-2007 (DCDQ-07; ≤ 57) cut scores classified 133 (M_{age} = 14.5 years) adolescents into high (HMC) and low (LMC) motor competence. Parents also completed the Swanson, Nolan and Pelham-IV (SNAP-IV) for descriptive purposes. Findings. A moderate correlation (r = .56, p < .001) was found between the AMCQ and the DCDQ’07 scores. Overall, 42 LMC cases were identified by both measures (AMCQ and DCDQ-07). Parents identified more males (11) than females (9) with LMC, whereas more female adolescents (22) self-reported LMC than males (18). A high proportion agreement (0.82) was seen, which was principally due to the 91 (68.4% of sample) HMC case-agreements. Conclusion. Parents identified fewer motor difficulties in their adolescent, especially for females. Self-report motor assessments may be more realistic for adolescents as they are aware of their own capabilities. Such measures are also more likely to identify previously undiagnosed adolescents with LMC.

Number of words: 198

Key words: Parents, Adolescence, Low motor competence
People with low motor competence (LMC) are unable to perform many motor tasks with the same level of proficiency as their peers. They experience difficulties in performing many activities of daily living (ADLs) such as dressing and using eating utensils (Dunford et al., 2005). This condition may be formally diagnosed as Developmental Coordination Disorder (DCD; American Psychiatric Association [APA], 2013; Kirby et al., 2011) when all criteria in the Diagnostic and Statistical Manual (fifth edition; DSM-5) are met. Some will outgrow the condition (APA, 2013; Kirby et al., 2011), however between 50-70% of those identified during childhood still experience motor difficulties into adolescence and adulthood (Purcell et al., 2015).

The adolescent phase is thought to span from 12- to 22-years of age (Harter, 2012) and is considered to be when an individual develops an independent identity separate to their parents (Kroger, 2007). Therefore adolescence is an important time for those with LMC to receive support as they face many social-emotional and physical challenges during this phase (Hill et al., 2011; O'Dea and Connell, 2016) and may conceal their motor difficulties from their parents. Unfortunately, many remain undiagnosed or unsupported for a number of reasons. Parents may be unaware of the existence of the disorder or visit many health professionals before receiving a diagnosis (Missiuna et al., 2006a). Other parents may place their concerns on the ‘back burner’ as motor difficulties are able to be managed at home (Missiuna et al., 2006b) or their child is given a different diagnosis due to symptoms being similar to other developmental disorders such as Autism Spectrum Disorder (ASD), learning difficulties or Attention Deficit Hyperactivity Disorder (ADHD; Kirby et al., 2007). Finally, adolescents with LMC may adopt coping mechanisms that mask or hide their difficulties (Fitzpatrick and Watkinson, 2003), particularly
from their parents or peers in order to fit in (Hill et al., 2011). For example, many conceal bullying or peer-victimization from their parents which may lead to less social opportunities and lower levels of social support (Missiuna et al., 2008). The lack of peer support experienced by some (O’Dea and Connell, 2016; Payne et al., 2013) may contribute to lower levels of self-worth (Skinner and Piek, 2001) and associated internalizing behaviors (Cairney et al., 2013). The recognition of motor difficulties by parents during adolescence would attract support in the development of strategies to negotiate social-emotional challenges; (Skinner and Piek, 2001; Rose et al., 2015; Payne et al., 2013) and improve life satisfaction and employment opportunities as they enter adulthood (Kirby et al., 2013).

A parent’s awareness of their child’s level of motor skill competence may differ between male and female children (Liong et al., 2015). This could be related to differences in social expectations, physical activity preferences (Cairney et al., 2012) or skill proficiency. A longitudinal study found age-related gender differences in motor skill proficiency (Barnett et al., 2010). Proficiency of kicking, catching and throwing improved for males from childhood to adolescence to a greater extent than females (Barnett et al., 2010). This could be related to different social experiences as males tend to socialize more through vigorous ball-related physical activities and competitive sports, whereas females are more likely to socialize during sedentary activities such as talking with friends or shopping (Cairney et al., 2005; Lingam et al., 2013; Hill et al., 2011; Payne et al., 2013). Consequently, movement difficulties experienced by adolescent females may not be recognised by their peers or parents.

Some parents may realize their child has motor difficulties due to their poorer performance and lower levels of participation in physical tasks or limited social interactions (Cairney et al., 2005; Cairney et al., 2012). Many, however, have difficulties understanding their
child’s motor delay which may cause feelings of uncertainty about their parenting and lower levels of confidence in providing support (Barnett et al., 2013). Others may over assist by completing daily tasks for their child (Missiuna et al., 2006b) or experience feelings of helplessness when their young person refuses assistance (Kirby et al., 2011). Brown and Lane (2014) found parents accurately reported their child’s fine motor control and manual coordination when compared to a performance based measure but were not able to accurately identify issues in other domains such as upper-limb coordination. During adolescence, peer comparisons become more important regardless of level of motor competence however among those with LMC this may have a negative impact (Payne et al., 2013). Therefore, it is important to consider the type of motor assessment tools designed for adolescents as parents may not fully understand nor be aware of the personal challenges or school-based issues faced by their young person (Hill et al., 2011; Pannekoek et al., 2012). Parents may be unaware that their adolescent has LMC as many avoid sharing or revealing difficulties they experience regarding school-based issues or interpersonal relationships with their parents (Gagnon-Roy et al., 2016). Alternatively, some parents may simply think their son or daughter is non-sporty and not realise the level of angst being experienced by them and the impact LMC can have on a range of health outcomes (Missiuna et al., 2008). A parent who is aware of their child’s motor competency may be able to assist them in negotiating these personal and social difficulties (Kirby et al., 2011b). The purpose of this study, therefore, is to compare a parent reported assessment of adolescent motor competence and associated difficulties to self-reported assessment by the adolescent.
Method

Study sample

The sample comprised 133 adolescent and parent dyads. The participants were recruited through personal contacts ($n = 6$), an adolescents movement clinic ($n = 4$) community sporting clubs [Australian Rules Football League (AFL, $n = 62$), netball ($n = 5$) and basketball clubs ($n = 4$)] and local schools [independent ($n = 47$) and government ($n = 5$)] over a two year period. The inclusion criteria for adolescents were; aged between 12 and 16 years, English as a first language, good linguistic and cognitive ability sufficient to comprehend questions, and no other diagnosed disability such as cerebral palsy, learning difficulties or muscular dystrophy. No inclusion criteria were specified for parents or guardians. Parents were asked if their adolescent had sufficient language and cognitive capabilities to comprehend the questions and if they had any other diagnosed disabilities. This project was approved by the Human Research Ethics Committee of the University of Notre Dame in Perth, Western Australia.

Measures

Motor competence.

Adolescents. The Adolescent Motor Competence Questionnaire (AMCQ; Timler et al., 2016) is a self-report measure of motor competence. The 26-item questionnaire was developed for adolescents between the ages of 12- to 18-years to examine the ecological (skill level in physical surroundings) presence of motor tasks and functional activities of daily living and was informed by the DSM-V criteria for DCD (APA, 2013). Responses are based on a 4-point Likert scale of Never (1), Sometimes (2), Frequently (3), and Always (4) resulting in a maximum score of 104; a higher score represents a higher motor competence. Concurrent validity of the
questionnaire was established against the McCarron Assessment of Neuromuscular Development (MAND; $r = .49$, $p < .002$, proportion of agreement = 74%, sensitivity = 80%, specificity = 70%).

A score of 83 or below on the AMCQ indicates that motor difficulties may be present. This was matched to the cut score for LMC on the MAND (Timler et al., 2016). The AMCQ has test re-test reliability (intra-class correlation coefficients = 0.96), and internal consistency ($\alpha = 0.90$; Timler et al., 2016) and can be completed in less than 10 minutes.

Parents. Parent reported adolescent motor competence was measured by the Developmental Coordination Disorder Questionnaire-2007 (DCDQ’07; Wilson et al., 2009).

The DCDQ’07 is designed for parents of children 5- to 15-years-old. Parents are asked to compare their child’s motor performance to that of their child’s peers. It consists of 15 items which represent three subscales (Control During Movement, Fine Motor/Handwriting, and General Coordination) and uses a 5 point Likert scale of Not at all like your child (1), A bit like your child (2), Moderately like your child (3), Quite a bit like your child (4), and Extremely like your child (5). A maximum score is 75. For children aged between 10- to 15-years-old, scores below 57 indicate motor difficulties or suspected motor difficulties (Wilson et al., 2009). Evidence of internal consistency ($\alpha = 0.95$) and concurrent validity ($r = 0.34$, $p = .001$) has been established with an Australian adolescent sample (Pannekoek et al., 2012).

Adolescent Impulsivity and Hyperactivity.

As ADHD often co-occurs with DCD (Kirby et al., 2007), the Swanson, Nolan and Pelham-IV (SNAP-IV Teacher and Parents Rating Scale; Gau et al., 2008) was used to screen for this condition. The SNAP-IV is an 18-item norm-referenced checklist and uses a 4 point Likert scale of: Not at all (0), Just a Little (1), Quite a bit (2), and Very Much (3). It consists of three
subscales (ADHD-Inattention, ADHD-Hyperactivity-Impulsivity and ADHD-Combined). The score for each subscale is calculated, and the Average Rating per Item is compared to the 5% cutoff scores. The scale has evidence of test-retest reliability (intra-class correlation coefficients $= 0.59$-0.72), internal consistency ($\alpha = 0.88$-0.90) and concurrent validity (Gau et al., 2008).

Procedures

This study employed a quantitative design. The AMCQ was used for the adolescent sample as it is the only self-report motor competence measure available for this age range. The DCDQ’07 is the most widely used and recognised parent-report measure for assessing motor competence. The development of both questionnaires were informed by the DCD criteria outlined in the DSM (fourth version, text Revision; DCDQ’07; fifth version; AMCQ) and contain similar items that capture every day and sports based motor performance activities. Recruitment took place over a two year period. Questionnaires and written consent forms were distributed to sporting clubs and collected two weeks later (response rate $71/162 = 44\%$). Depending on the school, the questionnaires and consent forms were completed as hard copies or online. Schools that opted for hard copies obtained written consent before the adolescents completed the AMCQ during an allocated class (response rate $52/162 = 32\%$). The parent questionnaires (DCDQ’07 and SNAP-IV) were sent home to be completed and returned to school the following day. Twenty-nine parent questionnaires were not returned, however a high overall response rate was achieved (adolescents response rate $133/162 = 82\%$, parents response rate $133/141 = 94\%$). Six schools used the online version which enabled teachers and year group coordinators to email parents about the study. Adolescents and parents ($n = 14$) were able to complete questionnaires and online consent forms at a convenient time to them. It took adolescents 10 minutes, and parents
approximately 15 minutes to complete questionnaires. The overall response rate for returned adolescent questionnaires was 39% (162/415). Of the 162 adolescent questionnaires returned, only 133 parents also responded, thereby reducing the total sample included in the analysis to 133.

Data Analysis

SPSS version 23 (SPSS Inc., Chicago, IL, USA) was used to analyze the data. Descriptive statistics were derived for the total sample, males and females. The data (AMCQ, DCDQ’07 and SNAP-IV) were tested for normality and based on acceptable skewness and kurtosis values the appropriate parametric tests were used. For the analysis only the Total DCDQ’07 score was used and the SNAP-IV subscales were combined to group the sample into those with and without ADHD for descriptive purposes. The sample was also grouped into high and low motor competence based on the Total AMCQ (cut score ≤ 83) and DCDQ’07 (cut score ≤ 57) scores. Case agreement calculations for the two groupings were derived. Pearson’s correlation was used to examine the relationship between the Total DCDQ’07 and AMCQ scores. Independent t-tests were completed to examine differences between scores for male and female adolescents, mother and father responses, hardcopy and online completion and those whose parents reported their child did or did not have ADHD.

Results

Descriptive data for 133 pairs of adolescent (66.2 % males, $M_{age} = 14.49$ years, $SD = 0.794$, 12 to 16 years; 88 males, 45 females) and parent motor competence measures are reported in Table 1. A total of 103 mothers and 30 fathers participated in the study. Overall, males had higher AMCQ scores compared to females. There were no significant differences between scores for
Adolescent and Parent perspectives of motor competence

male ($M = 66.24$, $SD = 10.98$) and female adolescents ($M = 64.07$, $SD = 12.36$; $t (129) = .96$, $p = .303$) or questionnaire scores completed by fathers ($M = 68.67$, $SD = 7.53$) and mothers ($M = 264.58$, $SD = 12.25$; $t (131) = -1.73$, $p = .096$) on the DCDQ’07.

Table 1.

Descriptive statistics [$M(SD)$] for age, AMCQ, and DCDQ'07 measures for total sample, males and females.

<table>
<thead>
<tr>
<th>Measures</th>
<th>Total $(N = 133)$</th>
<th>Males $(N = 88)$</th>
<th>Females $(N = 45)$</th>
<th>Gender p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>14.49 (.79)</td>
<td>14.44 (.80)</td>
<td>14.58 (.78)</td>
<td>.357</td>
</tr>
<tr>
<td>AMCQ</td>
<td>87.15 (11.33)</td>
<td>89.68 (11.08)</td>
<td>82.20 (10.24)</td>
<td>.001</td>
</tr>
<tr>
<td>DCDQ’07</td>
<td>65.50 (11.46)</td>
<td>66.24 (10.98)</td>
<td>64.07 (12.36)</td>
<td>.303</td>
</tr>
</tbody>
</table>

AMCQ, Adolescent Motor Competence Questionnaire; DCDQ’07, Developmental Coordination Disorder Questionnaire, 2007;

SNAP-IV scores were derived for 131 of the 133 adolescents. Of these, 14 parents (10.7%; 10 males and 4 females) reported their child had some form of ADHD (Table 2). The data for these cases were retained in the study, as DCD is often diagnosed alongside ADHD (Kirby et al., 2007). There were no significant differences between hardcopy and online versions for the AMCQ scores ($p = .06$) or the DCDQ’07 ($p = .21$). Overall 114 hardcopy (85.7%) questionnaires and 19 online questionnaires (14.3%) were completed.

Table 2.

Descriptive statistics [$M(SD)$] for SNAP-IV $(N = 131)$ results between ACMQ and DCDQ’07
SNAPIV, Swanson, Nolan and Pelham-IV

There was a moderate positive correlation ($r = .56$, $p < .001$) between the Total AMCQ and the Total DCDQ’07 scores. The overall proportion of agreement between the DCDQ’07 and the AMCQ was 0.82 (Figure 1). This was primarily due to the high proportion of case agreements for those with HMC ($n = 91; 68.4\%$ of sample). On the other hand, 42 cases were identified with LMC by either the DCDQ’07 or the AMCQ. Of these, only 18 parent (DCDQ’07) and adolescent (8 females and 10 males; AMCQ) dyads agreed. The AMCQ scores identified more cases with LMC. Twenty two cases were identified by the AMCQ only and 2 cases by the DCDQ’07 only.
N = 133, Proportion of agreement = 0.82

Figure 1.

The proportion of Agreement between these identified with LMC by the Adolescent Motor Competence Questionnaire (AMCQ) and the Developmental Coordination Disorder Questionnaire 2007 (DCDQ’07).

Overall a total of 20 (18 case agreements and 2 DCDQ’07 only) LMC cases were identified by parents, 11 were male and 9 female. Whereas a total of 40 (18 case agreements, and 22 AMCQ only) adolescents self-reported LMC, 18 were male and 22 were female. Most of the 22 adolescents who were not identified by parents were female (n= 14).
An examination of questionnaire responses for the 18 case agreements, revealed similar responses to items relating to lower levels of participation in sports and physical activities, general coordination, a tendency to bump into things, break objects or be called clumsy. Parents also identified their child’s poor running skills, while the adolescents were more likely to be aware of their poor ball and fine motor skills.

The 2 adolescents (1 male, 1 female) identified with LMC by their parents, but not themselves had self-reported AMCQ scores very close to the cut point (84, 89). Their parents observed their poor handwriting and clumsiness (especially for the male). The parent of the female adolescent noted her poor jumping and running skills. When examining these two adolescents’ responses to the AMCQ, only the male adolescent reported lower handwriting scores, similar to his parents DCDQ’07 responses.

Discussion

Compared to the adolescent self-reports, parents recognized fewer children with LMC. They were more likely to acknowledge motor difficulties among their sons than daughters, whereas more females than males self-reported with LMC. These results are surprising and could be explained in several ways.

First, some parents may not be aware that LMC is an issue and therefore not relate to their child’s poor motor ability (Missiuna et al., 2006a). Environmental influences including family socio-cultural factors (such as parents’ physical activity levels; Barnett et al., 2013), social stresses (internalising behaviours; Cairney et al., 2013) and peer support (Payne et al., 2013) may also contribute to the parents’ ability to recognise motor competence. Parents may over assist their young person when completing a task, such as laying out and organizing
clothing before school. In addition, parent’s own physical activity level and the importance they place on participation may affect their confidence when providing support to their child (Barnett et al., 2013). Some adolescents may not want to share or acknowledge their LMC to their parents due to personal frustrations which cause them to bottle up their emotions (Hill et al., 2011) or lead to poor social support as a result of shying away from social or physical activity participation (Fitzpatrick and Watkinson, 2003; O'Dea and Connell, 2016). Green and Wilson (2008) found a low level of agreement between parent report (Developmental Coordination Disorder Questionnaire, DCDQ) and self-report (Co-ordination Skills Questionnaire, CSQ) motor skill assessments across a block of interventions. However, parents were only given the opportunity to respond to specific motor skills whereas children were able to rank themselves across a wider range of skills including ADLs (Green and Wilson, 2008).

In this study, more females than males self-reported with LMC. This is different from the male:female ratio reported in the DCD diagnostic criteria (2:1; APA, 2013) and other studies that have examined these gender differences (Cairney et al., 2013). This outcome could be due to a number of factors. Females are less motivated to participate in team sports (Fredricks and Eccles, 2005; Labbrozzi et al., 2013), prefer co-operative activities (Hands et al., 2015; Rose et al., 2011) or place greater importance on ADLs. Consequently, their poor motor skills may be less apparent or concerning to their parents. On the other hand, males place importance on sports participation and physical activities as they value a chance to compete, to win and hang out with their friends, compared to females who felt physical activities prevented them from doing the things that they liked (Vedul-Kjelsås et al., 2012). For example, Vedul-Khelsas and colleagues (2012) found physical fitness and self-perceptions among 11- to 12-year-olds differed, male perceptions correlated with athletic competence whereas female perceptions were more closely
related to social acceptance. Females’ also tend to place greater importance on close friendships and emotional support as their self-esteem is affected by their degree of body satisfaction, self-image, and appearance to a greater extent than males (Rose et al., 2011).

Another reason for the greater identification of males than females by parents may relate to lower expectations of daughters’ motor competence and placing less importance on their physical activity participation (Cairney et al., 2012). Parents often have higher expectations of boys’ competence in physical tasks and consider sport as more important, compared to girls (Fredricks and Eccles, 2005). We found that parents were more likely to place higher scores (“extremely like your child”) for their son’s ball skill competence, running and jumping skills. Similarly, Liong et al. (2015) also found parents were more able to accurately perceive their son’s (5 to 8 year-olds) level of object control skills. The higher participation in physical tasks involving speed, strength and endurance by boys compared to girls (Cairney et al., 2005) makes it easier for parents to observe and recognise level of motor competence in their sons as they tend to participate regardless of their motor competence level. Parents’ perceptions about their adolescents motor skill competence may be influenced by gender-specific characteristics as males are often viewed as strong, robust, autonomous and self-reliant compared to females who are described as loving, loyal, and family orientated.

Assessing motor competence reliably can be challenging given developmental fluctuations (improvements during adolescence and poorer coordination during adulthood; (Hands et al., 2015), the range of skills (locomotion, object control and balance) considered to accurately assess motor competence and the tendency to include gender biased items in tests of motor skill (Hands and Larkin, 1997). This could be due the type of items typically included in motor assessments which focus on tasks preferred by males such as ball skills or females being
less skilled in these activities (Hands and Larkin, 1997). The higher proportion of males
diagnosed in most studies with motor difficulties compared to females (APA, 2013; Cairney et
al., 2012) therefore, could also explain this gender bias.

Another factor that could account for the lack of congruency in identifying those with
LMC between the parent-report and self-report results is the questionnaire design. For example,
the DCDQ’07 asks parents to compare their child’s motor ability against similar aged peers,
whereas the AMCQ asks adolescents to reflect on how their own coordination impacts
performance on motor-related activities (Timler et al., 2016; Wilson et al., 2009). The
DCDQ’07 was designed for a wider age range (5- to 15-year-olds) and therefore is more limited
with the type of ADLs that could be included (handwriting and scissor use; Wilson et al., 2009).
The AMCQ was designed for 12- to 18-year-olds and therefore includes more age-relevant items
relating to peer comparison, social interactions, participation (individual versus team sports;
Timler et al., 2016). The AMCQ also has a greater number of ADL items that are
developmentally appropriate such as flossing between teeth, putting on make-up, changing
clothes for physical education classes and getting ready to go out (Timler et al., 2016).
Consequently, the adolescents can respond to activities that are relevant for them as greater value
is placed on peer opinions and acceptance and looking presentable during this phase (Rose et al.,
2011). The items on the AMCQ enable females to have a greater voice and an opportunity to
report on their motor difficulties. The gender differences identified in this study suggest the
content of the assessments used by parents and adolescents need further exploration. Therefore
the findings from this study indicate that assessing adolescent motor competence is best
undertaken using a self-report rather than a parent report measure.
Strengths and limitations

There are a number of limitations and strengths of the current study. While the sample size was adequate, generalization of the results to the broader Australian population is not possible due to recruitment difficulties. Participants were drawn from a range of sources. In order to ensure an adequate representation of adolescents with LMC, it was important not to over recruit participants through sporting associations, which was the easiest way to access adolescents outside school. As expected, significant differences in the Total AMCQ scores were found between those recruited through sporting clubs ($M = 92.63$, $SD = 5.86$) compared to those recruited elsewhere ($M = 82.64$, $SD = 12.71$; $t(105.40) = 5.98$, $p < .001$). This latter group comprised adolescents attending a movement clinic as well as many community contacts. Fewer females participated in the study which may be due to the recruitment process and the level of interest in participating, however some interesting differences still emerged. The demographics of the family and parents were not collected, which limited an exploration of environmental and family dynamics. Further analysis could not be completed with the SNAP-IV data given the small proportion of those identified with ADHD. The data were collected in two ways; online and hardcopy surveys however this did not affect the results as no significant differences were found for both the Total AMCQ and DCDQ’07 scores.

This study adds to previous literature published on the measurement of DCD and the relevance of self-report compared to parent-report questionnaires. Adolescents are capable of describing their own motor competence. The findings of this study highlight the importance of age appropriate motor competence measures and the need for further research using adolescent specific measures. The higher number of females identified with LMC in this study suggest that
future research should consider the girl:boy ratio of a DCD diagnosis (APA, 2013). It is possible
that gender biased items and measures being used to gather information about motor competence
are affecting results. It is important to provide adolescents with a voice at this critical phase of
development. During this phase they are trying to define their own personal identity and become
more independent from their parents. Providing them with an opportunity to identify their own
motor difficulties may be essential to helping find support or intervention program before they
enter adulthood.

Conclusions
Adolescents are aware of, and able to identify their level of motor competence in comparison to
their peers, whereas parents may not appreciate all aspects of their adolescent’s experiences.
Self-report questionnaires, such as the AMCQ, may be more sensitive measures of motor
competence for this age group, especially among females. Further research involving interviews
with parents and their adolescent would gather more in-depth information of parent and child
differences in perceptions of motor ability. Education about the impact of LMC during
adolescence may build awareness and support among parents as well as teachers, practitioners
and health care professionals.

Key findings:
- Parents identified more males then females with LMC
- Females self-reported more LMC than males

What this study adds:
It may be more realistic for self-report motor assessments to be used for adolescents as they are
aware of their own capabilities.
Acknowledgements

The authors acknowledge the community sporting clubs (AFL, netball and basketball clubs) and local schools (Independent and Government) for their assistance in promoting the study and providing participants. This project is supported through the Australian Government’s Collaborative Research Networks (CRN) program.

Research ethics

Ethical approval was obtained from the Human Research Ethics Committee of the University of All participants provided written informed consent.

Declaration of conflicting interests

The authors confirm that there is no conflict of interest.

Funding:

This research received no specific grant support from any funding agency in the public, commercial, or not-for-profit sectors.
References

Adolescent and Parent perspectives of motor competence

