2017

Exploring reasons why Australian senior secondary students do not enrol in higher-level mathematics courses

G Hine
The University of Notre Dame Australia, gregory.hine@nd.edu.au

Follow this and additional works at: http://researchonline.nd.edu.au/edu_conference

This conference paper was originally published as:
http://www.cvent.com/events/40-years-on-we-are-still-learning/custom-20-0a80e52fc6c34aa597dcedacb8f5fbb.aspx

Original conference paper available here:
http://www.cvent.com/events/40-years-on-we-are-still-learning/custom-20-0a80e52fc6c34aa597dcedacb8f5fbb.aspx

This conference paper is posted on ResearchOnline@ND at
http://researchonline.nd.edu.au/edu_conference/107. For more information, please contact researchonline@nd.edu.au.
40 years on: We are still learning!

Proceedings of the 40th Annual Conference of the Mathematics Education Research Group of Australasia

Edited by Ann Downton, Sharyn Livy, & Jennifer Hall
40 years on: We are still learning!
Proceedings of the 40th Annual Conference of the
Mathematics Education Research Group of Australasia

Edited by Ann Downton, Sharyn Livy, & Jennifer Hall

Published by
The Mathematics Education Research Group of Australasia Inc.
GPO Box 2747
Adelaide, SA 5001 www.merga.net.au

Monash MERGA40 Local Organising Committee

Helen Forgasz (co-convener) Gilah Leder
Ann Gervasoni (co-convener) Sharyn Livy
Jill Cheeseman Anne Roche
Barbara Clarke Carly Sawatzki
Aylie Davidson Hazel Tan
Ann Downton Karina Wilkie
Jennifer Hall Simone Zmood (Conference administrator)
Sarah Hopkins Helen Kaminski (Event co-ordinator)
Penelope Kalogeropoulos
Preface

This publication is a record of the proceedings of the celebratory 40th conference of the Mathematics Education Research Group of Australasia (MERGA), which, like the inaugural MERGA conference, was held at Monash University in Clayton, Melbourne. The proceedings are made available to conference delegates on a USB and are also published on the MERGA website at www.merga.edu.au.

The theme of this 40th anniversary conference was 40 years on: We are still learning! This theme was chosen to acknowledge the significant contributions of Australasian researchers over the past 40 years, was inspired by a group of currently active researchers who attended both MERGA1 and MERGA40, and is linked to the Monash University motto, Ancora Imparo (We are still learning). The theme also highlights the impact and importance of our collective research for enabling new learning, innovation, and critique of mathematics education for those in our region and beyond.

MERGA40 conference participants presented research papers, symposia, round table discussions, and short communications that covered a broad range of topics relevant to mathematics education across all countries, with a particular focus on the Australasian region. The MERGA40 conference also included a series of nine workshops focused on research-related issues and 15 Research Interest Area (RIA) discussion groups aligned with chapter themes in the most recent four-yearly review of mathematics education research in Australasia (Makar et al., 2016). All workshops and RIA discussion groups were led by MERGA members who are acknowledged in the proceedings and conference program. We thank these members for their important contribution, leadership, and generosity.

In accordance with established MERGA procedures, all research papers were blind peer-reviewed by panels of mathematics education researchers with appropriate expertise in the field. Papers were accepted for presentation only, or for both presentation and publication in the conference proceedings. Only those research papers accepted for presentation and publication are published in full in these proceedings. Symposia papers and the abstracts of all short communications and round tables were also peer-reviewed. The published proceedings include the keynote papers; the Beth Southwell Practical Implications Award paper; symposia papers; abstracts for round tables, short communications, and research papers accepted for presentation; and the titles of all workshops and Research Interest Area discussion groups.

We acknowledge, with gratitude, the efforts of the MERGA40 review panel chairs, reviewers, and the Monash editorial team, in reading and providing constructive feedback to presenters in a short timeframe. Ensuring that the published papers are of a high academic quality is an important responsibility of the MERGA community. We thank the proceedings editors, Ann Downton, Sharyn Livy, and Jennifer Hall, for their hard work and care in preparing these proceedings for publication.

Ann Gervasoni and Helen Forgasz
(Co-Conveners of the MERGA40 conference on behalf of the MERGA40 Monash organising committee)

Reference

MERGA40 Reviewers

Janeen Anderson
Judy Anderson*
Glenda Anthony
Catherine Attard
Robin Averill*
Judy Bailey
Caroline Bardini
Anne Bennison
Kim Beswick
Brenda Bicknell*
Susan Blackley
Janette Bobis*
Leicha Bragg
Helen Brown
Paul Brown
Ray Brown
Nigel Calder
Rosemary Callingham
Scott Cameron
Jeanne Carroll
Michael Cavanagh
Helen Chick
Sze Looi Chil
Mohan Chinnappan
Julie Clark
Phil Clarkson
Megan Clune
Audrey Cooke
Chelsea Cutting
Lorraine Day
Melinda Dixon
Michael Drake
Shelley Dole
Bruce Duncan
Raewyn Eden
Fiona Ell
Trevor Feder
Jill Fielding-Wells
Noleine Fitzallen*
Tricia Forrester
Kym Fry
Robyn Gandell
Vince Geiger
Merrilyn Goos
Peter Grootenboer
Ngarewa Hawera
Joanna Higgins
Gregory Hine
Kai Fai Ho
Kath Holmes
Siri-Malen Høynes
Jodi Hunter
Robert Hunter
Robert Hunting
Derek Hurrell
Chris Hurst*
Lorraine Jacob
Michael Jennings
Jyoti Jhagroo
Jo Knox
Mun Yee Lai
Janeen Lamb
Kevin Larkin
Generosa Leach
Gail Ledger
Chris Linsell
Esther Loong
Karen Major
Katie Makar
Margaret Marshman
Alasdair McAndrew
Jane McChesney
Catherine McCluskey
Heather McMaster
Carmel Mesiti
Paula Mildenhall
Jodie Miller*
Judith Mills
Chrissy Monteleone
Tracey Muir
Joanne Mulligan
Carol Murphy
Greg Oates
Bilinda Offen
Lisa O'Keeffe
Christine Ormond
Catherine Pearn
Tim Perkins
Pamela Perger*
Bob Perry
Robyn Pierce
Anne Prescott
Elena Prieto
Maria Quigley
Iresha Ratnagroo
Peter Rawlins
Robyn Reaburn
Anna Rogers
Wee Tiong Seah*
Yvette Semler
Pep Serow
Sashi Sharma
Anne-Marie Simpson
Kaye Stacey
Vicki Steinle
Duncan Symons
Kaye Treacy
Andy Yeh
Jenny Young-Loveridge
Jana Visnovska
Margaret Walshaw
Roger Wander
Jane Watson
Wanty Widjaja
Sue Wilson
Tiffany Winn
Bruce White*
Monica Wong
Xin Zhao

* Review Panel Chairs
Editorial Team Reviewers

<table>
<thead>
<tr>
<th>Jill Cheeseman</th>
<th>Jennifer Hall</th>
<th>Sharyn Livy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ann Downton</td>
<td>Sarah Hopkins</td>
<td>Anne Roche</td>
</tr>
<tr>
<td>Helen Forgasz</td>
<td>Penelope Kalogeropoulos</td>
<td>Hazel Tan</td>
</tr>
<tr>
<td>Ann Gervasoni</td>
<td>Gilah Leder</td>
<td>Karina Wilkie</td>
</tr>
</tbody>
</table>
Contents

PREFACE .. 3

MERGA40 REVIEWERS ... 4

KEYNOTES
The “M” in STEM: National Perspectives .. 18
 Alan Finkel
We are Still Learning to Integrate Affect (and Mathematics) into our Research 19
 Naomi Ingram

CLEMENTS-FOYSTER LECTURE
In Search of Mathematical Structure: Looking Back, Beneath, and Beyond
– 40 Years On.. 32
 Joanne Mulligan

INVITED PANEL: MERGA 1 TO MERGA 40
Progressing Along a “Road Less Traveled”: The History of School Mathematics 43
 Ken Clements
Forty Years on: Mathematical Modelling in and for Education 47
 Peter Galbraith
Mathematics Performance and Future Occupation: Are They (Still) Related? 51
 Gilah C Leder
“Does This Mean That Kindergarten Will Be a Remedial Year?” 55
 Bob Perry
Forty Years of Teaching Problem Solving ... 59
 Kaye Stacey

BETH SOUTHWELL PRACTICAL IMPLICATIONS AWARD
Framing, Assessing, and Developing Children’s Understanding of Time 64
 Margaret Thomas, Doug Clarke, Andrea McDonough, & Philip Clarkson

INVITED LECTURE
The “M” in STEM: AMSI’s Perspective ... 75
 Geoff Prince
RESEARCH REPORTS

The Prevalence of the Letter as Object Misconception in Junior Secondary Students... 77
Zarina Akhtar & Vicki Steinle

Developing Interactive ICT Tools for the Teaching and Learning of Vectors at A-Level.. 85
Khemduth Singh Angateeah, Savial Thapermall, & Ravi Jawahir

The Modelling Process and Pre-Service Teacher Confidence .. 93
Taryn Axelsen, Linda Galligan, & Geoff Woolcott

Re-Examining a Framework for Teacher Identity as an Embedder-of-Numeracy 101
Anne Bennison

Privileging a Contextual Approach to Teaching Mathematics: A Secondary Teacher’s Perspective... 109
Raymond Brown & Trevor Redmond

Partial Credit in Multiple-Choice Items .. 117
Joan Burfitt

How Might the Use of Apps Influence Students’ Learning Experiences? Exploring a Socio-Technological Assemblage .. 125
Nigel Calder & Carol Murphy

Entangled Modes: Social Interaction in Collaborative Problem Solving in Mathematics .. 133
Man Ching Esther Chan & David Clarke

Investigating Teachers’ Perceptions of Enabling and Extending Prompts 141
Jill Cheeseman, Ann Downton, & Sharyn Livy

The Impact of a Measurement-Focused Program on Young Children’s Number Learning .. 149
Jill Cheeseman & Yianna Pullen

Snapshots of Productive Noticing: Orchestrating Learning Experiences Using Typical Problems ... 157
Ban Heng Choy & Jaguthsing Dindyal

The Argument from Matriculation Used by Proprietors of Victorian Secondary Schools Around 1900 .. 165
Ken Clements & Nerida F. Ellerton

That First Step: Engaging with Mathematics and Developing Numeracy 173
Audrey Cooke

“Maths Inside”: A Project to Raise Interest in Mathematics 181
Mary Coupland, Marco Angelini, Anne Prescott, Sandy Schuck, Tapan Rai, & Carmen Lee

Mastery Learning: Improving the Model ... 189
Mary Coupland, Danica Solina, & Gregory E. Cave
The Interplay Between Pre-service Teachers’ Intentions and Enacted Mathematical Content Knowledge in the Classroom ... 197
Leah Daniel

Exploring Ways to Improve Teachers’ Mathematical Knowledge for Teaching with Effective Team Planning Practices ... 205
Aylie Davidson

Primary School Mathematics Leaders’ Views of their Mathematics Leadership Role 213
Kerryn Driscoll

Historical Perspectives on the Purposes of School Algebra .. 221
Nerida F. Ellerton, Sinan Kanbir, & Ken Clements

Fourth-Graders’ Meta-Questioning in Statistical Investigations 229
Lyn D. English, Jane M. Watson, & Noleine Fitzallen

Essential Topics for Secondary Mathematics Success:
What Mathematics Teachers Think .. 237
Melinda Evans

Hypothesis of Developmental Dyscalculia and Down Syndrome:
Implications for Mathematics Education .. 245
Rhonda Faragher

Gender and VCE Mathematics Subject Enrolments 2001-2015
in Co-Educational and Single-Sex Schools ... 253
Helen Forgasz & Gilah Leder

A Secondary Mathematics Teacher’s Perceptions of her Initial Attempts at
Utilising Whiteboarding in her Classes ... 261
Tricia Forrester, Carolyn E. Sandison, & Sue Denny

The Development of Addition and Subtractions Strategies for Children
in Kindergarten to Grade 6: Insights and Implications ... 269
Ann Gervasoni, Kerry Giumelli, & Barbara McHugh

Teaching Fractions for Understanding: Addressing Interrelated Concepts 277
Seyum Getenet & Rosemary Callingham

Teachers’ Understanding and Use of Mathematical Structure 285
Mark Gronow, Joanne Mulligan, & Michael Cavanagh

Initial Teacher Education Students’ Reasons for Using Digital Learning Objects
When Teaching Mathematics .. 293
Ngārewa Hāvera, Sashi Sharma, & Noeline Wright

Peer Observation as Professional Learning about Mathematical Reasoning 301
Sandra Herbert & Leicha A. Bragg

Exploring Reasons Why Australian Senior Secondary Students Do Not Enrol
in Higher-Level Mathematics Courses .. 309
Gregory Hine

Does (Problem-Based) Practice Always Make Proficient? .. 317
Sarah Hopkins & James Russo
Explicitly Connecting Mathematical Ideas: How Well Is It Done?.................................325
 Chris Hurst & Ray Huntley

Exploring Undergraduate Mathematics Students’ Difficulties with the Proof of
Subgroup’s Closure under Operation..333
 Marios Ioannou

Is Mathematics Education Worthy? From Mathematics for Critical Citizenship
to Productivity Growth...341
 Dan Jazby

Grade 10 Students’ Mathematical Understanding and Retention in a
Problem–Based Learning (PBL) Classroom ...349
 Premanan Juakwon & Duanghathai Katwibun

Knowledge, Beliefs, and Innovative Curriculum..357
 Laurinda Lomas

Engaging Pre-Service Mathematics Teachers in Creating Spatially-Based Problems
in a 3D Virtual Environment: A CAVE2TM Experience ...365
 Margaret Marshman, Geoff Woolcott, & Shelley Dole

Structure in the Professional Vocabulary of Middle School Mathematics Teachers
in Australia ..373
 Carmel Mesiti & David Clarke

Using Coding to Promote Mathematical Thinking with Year 2 Students:
Alignment with the Australian Curriculum...381
 Jodie Miller & Kevin Larkin

Online, Anytime, Anywhere: Enacting Flipped Learning in
Three Different Secondary Mathematics Classes ...389
 Tracey Muir

Learning from our Neighbours: The Value of Knowing Their Number History........397
 Kay Owens

Generalising Fraction Structures as a Means for Engaging in Algebraic Thinking405
 Catherine Pearn & Max Stephens

First-Year University Students’ Difficulties with Mathematical Symbols:
The Lecturer/Tutor Perspective...413
 Robyn Pierce & Meredith Begg

11th Grade Students’ Self-Regulated Learning in a Mathematics Problem-Based
Learning (PBL) Classroom ..420
 Supatpong Promsawan & Duanghathai Katwibun

Statistics Instructors’ Beliefs and Misconceptions About p-values..........................428
 Robyn Reaburn

Revisiting Friedrich Froebel and his Gifts for Kindergarten:
What are the Benefits for Primary Mathematics Education?.................................434
 Simone Reinhold, Ann Downton, & Sharyn Livy
Perceived Changes in Teachers’ Knowledge and Practice: The Impact on Classroom Teachers from Leader Participation in Whole-School Reform of Mathematics Teaching and Learning

Anne Roche & Ann Gervasoni

Examining the Impact of Lesson Structure when Teaching with Cognitively Demanding Tasks in the Early Primary Years

James Russo & Sarah Hopkins

Pricing: Exploring the Intersection Between Values, Maths, Finance, and Entrepreneurship

Carly Sawatzki

Using Activity Theory to Understand a Mathematics Leader’s Motivations and Use of Mathematical Knowledge for Teaching

Matt Sexton & Janeen Lamb

Exploring Critical Thinking in a Mathematics Problem-Based Learning Classroom

Rakkor Siriwat & Duanghathai Katwibun

10th Grade Students’ Participation in a Mathematics Problem-Based Learning Classroom

Ajaree Srikhamsuk & Duanghathai Katwibun

Mathematics Identities: From Motivations to Turning Points in Mathematics Identity Construction

Dhanya Surith

Using Drawings in Solving Mathematics Word Problems

Ray Teahen & Robin Averill

Examining Non-Traditional Pathway Preservice Teachers’ Attitudes Towards Mathematics

Dung Tran & Syed Javed

Indigenous Teacher Education: When Cultural Enquiry Meets Statistical Enquiry

Tony Trinick & Tamsin Meaney

Assessing the Creation of Value in a Community of Practice Linking Pre-Service and In-Service Mathematics Teachers

Deborah Tully, Leon Poladian, & Judy Anderson

Supporting Teachers in Planning for Interactions with Students’ Ideas

Jana Visnovska & Jose Luis Cortina

Students’ Development of Statistical Literacy in the Upper Primary Years

Jane Watson, Rosemary Callingham, & Lyn English

Why Teachers of Foundation Phase Mathematics Have Yet to “Take Up” Progressive Roles

Lise Westaway & Mellony Graven

Relating Emotions to Motivational Processes using Middle-School Students’ Expressed Aspirations for Learning

Karina J Wilkie
Maths Anxiety: The Nature and Consequences of Shame in Mathematics Classrooms ... 562
Sue Wilson

Graphic-Rich Items within High-Stakes Tests: Indonesia National Exam (UN), PISA, and TIMSS ... 569
Destina Wahyu Winarti & Sitti Maesuri Patahuddin

Pre-Service Teachers’ and Tutors’ Perceptions about the Value of Talk Moves 577
Vince Wright

SYMPOSIA

STEM Professional Learning: Evaluating Secondary School Teachers’ and Students’ Experiences ... 586
The STEM Teacher Enrichment Academy Approach ... 587
Judy Anderson

Evaluation of the First STEM Teacher Enrichment Academy ... 591
Kathryn Holmes

The Second STEM Teacher Enrichment Academy Evaluation: Teachers’ and Students’ Perspectives ... 595
Gaye Williams

Developing an Evaluation Framework for Future STEM Academies ... 599
Deborah Tully

Transitions in Mathematics Education ... 603

Transitions in Language Use in Primary School Online Mathematical Problem Solving ... 604
Duncan Symons & Robyn Pierce

Mathematical Writing and Writing Mathematics: The Transition from Secondary to University Mathematics ... 608
Robyn Pierce & Caroline Bardini

The Valuing of Deep Learning Strategies in Mathematics by Immigrant, First-Generation, and Australia-Born Students: Transitions Between Cultural Worlds... 612
Abi Brooker, Marian Mahat, & Wee Tiong Seah

Supporting Mathematics Students with Autism Spectrum Disorders Through the Lens of Teacher and Student Values: A Research Framework for Teacher Transformation ... 616
Monica E. Carr & Wee Tiong Seah

STEM Practices: A Reconceptualization of STEM in the Early Years ... 620

Early Learning STEM Australia (ELSA): Developing a Learning Program to Inspire Curiosity and Engagement in STEM Concepts in Preschool Children.... 621
Tracy Logan, Tom Lowrie, & Claudette Bateup

The “Math” in STEM Practices: The Role of Spatial Reasoning in the Early Years ... 625
Tom Lowrie, Tracy Logan, & Kevin Larkin
ELPSA and Spatial Reasoning:
A Design-Based Approach to Develop a “Mapping” App...629
Kevin Larkin & Caroline Kinny-Lewis

Research Engagement and Impact in Mathematics Education ..633

Evidencing Research Engagement and Impact ..634
Merrilyn Goos

The Convoluted Nature of a Research Impact Pathway...638
Vince Geiger

Engagement and Impact through Research Participation
and Resource Development ..642
Anne Bennison & Shelley Dole

“Numeracy for Learners and Teachers”: Impact on MTeach Students646
Helen Forgasz

Reframing Mathematical Futures: Using Learning Progressions to Support
Mathematical Thinking in the Middle Years ...650

Developing Learning Progressions to Support Mathematical Reasoning in the
Middle Years: Introducing the Reframing Mathematical Futures II Project651
Dianne Siemon

Developing Learning Progressions to Support Mathematical Reasoning in the
Middle Years: Algebraic Reasoning ...655
Lorraine Day, Max Stephens, & Marj Horne

Learning Progressions to Support Mathematical Reasoning in the Middle Years:
Geometric Reasoning ...659
Marj Horne & Rebecca Seah

Developing Learning Progressions to Support Mathematical Reasoning in the
Middle Years: Statistical Reasoning ..663
Jane Watson & Rosemary Callingham

RESEARCH PRESENTATION ABSTRACTS

Challenging Teacher Perceptions: “Those Children will Struggle No Matter
What You Do to Them” ..668
Glenda Anthony, Roberta Hunter, & Jodie Hunter

Students’ Reflections on Portfolio Assessment in Mathematics.................................668
Hem Chand Dayal, Bronwen Cowie, & Salanieta Bakalevu

Tracing Student Teachers’ Mathematical Modelling Motivation and
Competencies over Time: A Design-Based Inquiry ...669
Rina Durandt, Gerrie Jacobs, & Geoffrey Lautenbach

Pedagogical Architecture for Supporting Effective Numeracy Learning669
Vince Geiger
Perceived Impact of In Situ Professional Learning on Teachers’ Mathematics Knowledge Relating to Multiplicative Thinking and Their Classroom Practice
 Kerry Giumelli, Barbara McHugh, Tammy Roosen, Nadine Meredith, Geraldine Caleta, Paul Stenning, & Patrice Brady

An Examination of High and Low Achievers on ACER’s Numeracy Test for Initial Teacher Education Students
 Jennifer Hall & Simone Zmood

Changing Pre-Service Teachers’ Perceptions of Teaching Mathematics
 Sandra Herbert & Colleen Vale

Resources Promoting Statistical Threshold Concepts and Addressing Statistical Anxiety and Apathy
 Peter Howley & Elena Prieto

Algorithms… Alcatraz: Are Children Prisoners of Process?
 Chris Hurst & Ray Huntley

The Valuing of Communication in Primary Mathematics Classrooms in Australia
 Penelope Kalogeropoulos, Sucharita Nadiger, & Wee Tiong Seah

Metacognition of Pre-Service Mathematics Teachers
 Duanghathai Katwibun

Investigating Robust Algebraic Understanding of 9th Grade Students in a Problem-Based Learning Classroom
 Duanghathai Katwibun & Boontatika Sonti

Student Experiences of Remedial Mathematics Tuition Delivered via Personal Videoconferencing
 Eugenie Kestel & Helen Forgasz

What is a Pedagogy that Supports Teaching Mathematics for Understanding in Primary Schools – Could Teaching for Mathematising be a Solution?
 Mun Yee Lai, Julie Clark, & Chun Ip Fung

Using a Reflective Inquiry Approach to Build “At-Risk” Learners’ Confidence and Responsibility
 Bernadette Long

Mathematics Pre-Service Teachers’ Pedagogical Content Knowledge in Planning a Lesson
 Meiliasari, Wanty Widjaja, Susie Groves, & Colleen Vale

Understanding a Young Child’s Critical Mathematical Thinking Capabilities
 Chrissy Monteleone & Paul White

The Function of Signs and Attention in Teaching-Learning of Mathematics
 Sung-Jae Moon & Kyeong-Hwa Lee

Melody of Functions and Graphs: Improving Senior Secondary Mathematics Students’ Understanding of the Function Concept by Active Integration of Mathematics and Music
 Istvan Nagy & John Malone
Indonesian Mathematics Teachers’ and Educators’ Perspectives on Their Choice of Facebook Groups .. 677
Sitti Patahuddin & Siti Rokhmah

An Evaluation of Online Resources Designed to Teach Mathematics for Equal Opportunity .. 678
Elena Prieto, Peter Howley, & Kathryn Holmes

Spatial orientation ability of 11-13 year-old students: Some empirical findings........ 678
Ajay Ramful, Tracy Logan, & Tom Lowrie

Articulating Teacher Learning: The Power of Self-Study .. 679
Yvonne Reilly

Comprehending or Creating? On Sense-Making and Meaning-Making 679
Thorsten Scheiner

Assessment for Learning Techniques in the Pacific Island Context:
What are ‘Teachers’ Views? .. 680
Penelope Serow & Julie Clark

On Translating Research in Mathematics Education ... 680
Rudolf Straesser, Claire Margolinas, & Vince Geiger

Junior Secondary Mathematics Teachers’ Perspectives on the Transition of Year 7 into Secondary Schooling in Queensland 681
Rebekah Strang & Kevin Larkin

Teachers’ Anticipation of the Potential of Specific Suggestions for Mathematical Learning Experience ... 681
Peter Sullivan, Melody McCormick, & Aylie Davidson

Are Students’ Perceptions about Mathematics Different Amongst Those Taking Different Senior Secondary Mathematics Subjects? 682
Hazel Tan

He Puawaitanga Harakeke: Using technology to accelerate learning in Māori-medium learning programmes ... 682
Tony Trinick, Piata Allen, Bruce Taplin, & Ana Pipi

Towards a Positive Approach to Teaching for Productive Disposition in Mathematics ... 683
Aimee Woodward, Kim Beswick, & Greg Oates

ROUND TABLE ABSTRACTS

Rethinking Mathematical Tasks... 685
Ban Heng Choy & Jaguthsing Dindyal

Scaling Up and Sustaining Successful Interventions in Mathematics Teaching 686
Merrilyn Goos, Robin Proffitt-White, & Anne Bennison

Exploring Emotional Aspects of Pre-Service Mathematics Learning Environments... 687
Joanna Higgins

Mathematics Leadership in Primary Schools.. 688
Heather McMaster, Janette Bobis, & Jennifer Way
Use of Social Media in Preservice Mathematics Education Courses
Paul Brown

Exploring Primary Teachers’ Conceptions of Mathematical Fluency:
Are We Speaking the Same Language?
Katherin Cartwright

Looking Inside the Black Box of Mathematics Teacher Noticing
Ban Heng Choy & Jaguthsing Dindyal

Improving Mathematics Curriculum Support for Indigenous Language Speaking Students
Cris Edmonds-Wathen

The Use of Contextual Patterning Tasks with Young Pāsifika and Maori Students in New Zealand Mathematics Classrooms
Jodie Hunter & Jodie Miller

Unidoodle
Michael Jennings

Factors Influencing Student Selection of Senior Secondary School Mathematics Subjects
Michael Jennings, Merrilyn Goos, & Peter Adams

Practitioner Inquiry: Developing Capabilities in Mathematics Teachers
Jyoti Jhagroo

Teachers Choosing Mathematics
Inge Koch & Janine McIntosh

Student Engagement in Mathematics
Alexandra Laird & Peter Grootenboer

Testing Inquiry-Based Mathematics Competencies
Dorte Moeskær Larsen

Students’ Espoused and Enacted Theories in an Inquiry Mathematics Classroom
Generosa Leach

Task Modification to Facilitate Creativity by Korean Prospective Mathematics Teachers
Kyeong-Hwa Lee

A Five Question Approach to the Teaching of Mathematics
John Ley

Numeracy of Undergraduate Business School Students
Chris Linsell, Brigid Casey, & Christine Smith-Han

Numeracy in Action in Family Shopping Experiences: A View from the Trolley
Amy MacDonald, Angela Fenton, & Christina Davidson

A Developing Framework for Identifying Young Children’s Engagement with the Spatial Features of Play Spaces
Catherine McCluskey & Joanne Mulligan
Influential Factors for Effective Problem Solving Practice in Primary Mathematics Teachers
Melody McCormick

Using Peer-Reflection to Develop Self-Regulated Learning Strategies in Year 10 Mathematics
Karen McMullen

Exploring Mathematics Pedagogy in Collaborative Teaching Environments
Bilinda Offen & Naomi Ingram

The Road to Transformative Healing of Mathematics Anxiety: A Case Study in Progress
Timothy Perkins

Linguistic Obstacles to Second Language Learners’ Access to Mathematical Talk for Individualised Sense-Making
Sally-Ann Robertson & Mellony Graven

Interbreeding Paradigms in Research on Mathematics Knowing and Learning
Thorsten Scheiner & Marcia Maria Fusaro Pinto

Fitness for Purpose of Tertiary Algebra Textbooks: An Arabic Case Study
Hassnaa Shaheed

Evaluating Learning Analytics of an Online System to Improve Teacher Education Students’ Numeracy Skills Development
Thuan Thai, Amanda Yeung, Timothy Perkins, Kate Hartup, & Marguerite Maher

South African Vocational Engineering Students’ Conceptual Understandings of Area, Surface Area, Volume, and Flow Rate Measurement: A Case Study
Pamela Vale

Student Errors in a Mathematical Literacy Examination and the Correlated English Language Features
Pamela Vale

Impact of Culture in Parental Control and Mathematics Achievement of their Children
Daya Weerasinghe

High-Potential Mathematics Students and Their Mathematics-Related Activities Outside School
Simone Zmood

RESEARCH INTEREST AREA DISCUSSION GROUPS

WORKSHOP SESSIONS
Exploring Reasons Why Australian Senior Secondary Students Do Not Enrol in Higher-Level Mathematics Courses

Gregory Hine

The University of Notre Dame Australia
<gregory.hine@nd.edu.au>

In this research paper, I present the reasons why senior secondary students elect not to enrol in a higher mathematics course. All Year 11 and Year 12 mathematics students within Western Australian secondary schools were invited to participate in an online survey comprised chiefly of qualitative items. The key reasons espoused by students include an expressed dissatisfaction with mathematics, the opinion that there are other more viable courses of study to pursue, and that the Australian Tertiary Admissions Ranking (ATAR) can be maximised by taking a lower mathematics course. In addition, student testimony suggests that there are few incentives offered for undertaking a higher mathematics course.

Mathematics has been heralded as a critically important subject for students to undertake (McPhan, Morony, Pegg, Cooksey, & Lynch, 2008; Office of the Chief Scientist [OCS], 2014; Sullivan, 2011). This importance has been argued largely on the basis of students learning key interdisciplinary knowledge such as science, technology, and engineering (Ker, 2013), and to use this knowledge base to add intellectual value to new technologies, drive innovation and research capacities, and to help Australia compete globally (Australian Academy of Science [AAS], 2006). Furthermore, failure to produce a workforce with sufficient training in mathematics is considered a national concern for the economy of Australia and for keeping Australia as a competitor in the technological world (AAS, 2006; Hine et al., 2016; Maltas & Prescott, 2014; Rubinstein, 2009).

The importance of mathematics is also highlighted within tertiary study, where researchers suggest that university success depends on the level of mathematics studied at secondary school (Nicholas, Poladin, Mack, & Wilson, 2015; Rylands & Coady, 2009). More specifically, findings from various studies indicate that students who undertake higher-level mathematics courses at a secondary level tend to outperform their counterparts who undertake a lower-level mathematics course (Anderson, Joyce, & Hine, in press; Kajander & Lovric, 2005; Sadler & Tai, 2007). Despite this acknowledged importance, the number of students enrolling in higher-level and intermediate secondary school mathematics in Australia is declining (Barrington & Evans, 2014; Kennedy, Lyons, & Quinn, 2014; Wilson & Mack, 2014).

While most Australian universities have dispensed with subject prerequisites for degree programs (Maltas & Prescott, 2014; Nicholas et al., 2015), the phenomenon of declining enrolments is also experienced within tertiary mathematics courses (Brown, 2009; OCS, 2012). At the same time, there has been a reported increase in first-year university students lacking the appropriate mathematical background to complete courses in various disciplines (Poladian & Nicholas, 2013; Rylands & Coady, 2009; Wilson et al., 2013). Studies conducted in New South Wales and South Australia have identified why Australian students enrol in higher-level mathematics courses (Mathematical Association of New South Wales, 2014; McPhan et al., 2008), but there are few reasons proffered as to why capable students do not enrol in these courses. More recently, some researchers in Queensland have identified that capable students do not enrol in senior calculus mathematics courses due to a limited understanding of the relevance of mathematics (Easey & Gleeson, 2016) or the removal of Mathematics C (an advanced mathematics course) during the years 2002–2006.
course in Queensland) from university prerequisite lists (Jennings, 2014, 2013). Additionally, there is no research available that seeks to explain the declining student enrolments in a Western Australian context.

Research Aims and Significance

The aim of this research is to explore the perceptions of Year 11 and Year 12 Australian Tertiary Admissions Ranking (ATAR) mathematics students in Western Australian schools as to why they believe that senior secondary students do not enrol in a higher-level mathematics course. The ATAR is a percentile score that denotes an Australian student’s academic ranking relative to his or her peers upon completion of secondary education. This score is used to predict a student’s suitability for particular university courses and, ultimately, for university entrance. The research itself builds on the findings of a previous study (Hine, 2016) in which I investigated the perceptions of Heads of Learning Area: Mathematics (HOLAMS) as to why they felt that capable senior secondary students do not enrol in the two highest mathematics courses. HOLAMS indicated perceptions of student awareness that two mathematics courses are not needed for university entrance, there are other viable and less rigorous courses of study available, and students can maximise their ATAR score without completing those mathematics courses.

It is hoped that findings from this research project may be of particular interest to secondary and tertiary mathematics educators in Western Australia, and more broadly to mathematics educators across Australia. The overarching guiding question to be explored is: What are the factors that influence Year 11 and Year 12 ATAR students’ decisions not to enrol in higher-level mathematics courses in Western Australian secondary schools? This research is a predominantly qualitative study designed to give a snapshot (Rose, 1991) of the students’ perceptions regarding this phenomenon.

Methodology

This study was interpretive in nature, and relied principally on qualitative research methods to gather and analyse data about why Year 11 and Year 12 ATAR mathematics students feel that senior secondary students do not enrol in higher-level mathematics courses. All Year 11 and Year 12 ATAR mathematics students in Western Australian secondary schools were invited to participate in the study. Participants registered their perceptions through the completion of a single anonymous, online survey comprising 12 five-point, Likert scale items (Q3) and two open qualitative questions (Q4 and Q5). The survey items were developed from the findings of a previous study (Hine, 2016) as well as from current literature (Barrington & Evans, 2014; Kennedy, Lyons, & Quinn, 2014; Wilson & Mack, 2014). The 12 Likert scale items required participants to the extent to which they felt that senior secondary students did not enrol in a higher mathematics course (1 = Strongly Disagree, 2 = Disagree, 3 = Undecided, 4 = Agree, 5 = Strongly Agree). The two open-ended questions asked participants to elaborate on their responses to the Likert scale items and to make any further comments regarding why they felt that senior secondary students did not enrol in a higher mathematics course. Additional demographic information of participants was obtained through a series of closed questions regarding gender, year level, the mathematics courses currently enrolled in (e.g., Applications, Methods, Specialist), type of school (e.g., secondary 7-12), gender composition of school (e.g., co-educational), and location of school (metropolitan or regional).
Participants

In Western Australia, there are 168 secondary schools (36 Catholic, 52 Independent, and 80 Government) offering Australian Tertiary Admissions Ranking (ATAR) mathematics courses to Year 11 and 12 students. These courses are Mathematics Applications, Mathematics Methods, and Mathematics Specialist (School Curriculum and Standards Authority, 2016). All Year 11 and Year 12 students enrolled in these purposively sampled schools were invited to participate in the research, and a total of 1,351 students from 26 schools gave their consent to participate. The demographic information of the participants is provided in Tables 1, 2, and 3.

Table 1
Summary of Participants’ Demographic Data (by Gender and Year Level)

<table>
<thead>
<tr>
<th>Gender</th>
<th>Year 11</th>
<th>Year 12</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male</td>
<td>278</td>
<td>212</td>
<td>490</td>
</tr>
<tr>
<td>Female</td>
<td>455</td>
<td>406</td>
<td>861</td>
</tr>
</tbody>
</table>

Table 2
Summary of Participants’ Demographic Data (by School Location and Composition)

<table>
<thead>
<tr>
<th>School composition</th>
<th>Metropolitan</th>
<th>Regional</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coeducational</td>
<td>737</td>
<td>113</td>
<td>850</td>
</tr>
<tr>
<td>Single Gender</td>
<td>501</td>
<td>0</td>
<td>501</td>
</tr>
</tbody>
</table>

Table 3
Summary of Participants’ Demographic Data (by Mathematics Course and Gender)

<table>
<thead>
<tr>
<th>Course(s)</th>
<th>Male</th>
<th>Female</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Applications</td>
<td>264</td>
<td>554</td>
<td>818</td>
</tr>
<tr>
<td>Applications and Methods</td>
<td>7</td>
<td>9</td>
<td>16</td>
</tr>
<tr>
<td>Methods</td>
<td>109</td>
<td>288</td>
<td>397</td>
</tr>
<tr>
<td>Methods and Specialist</td>
<td>58</td>
<td>62</td>
<td>120</td>
</tr>
</tbody>
</table>

Data Analysis

Qualitative data from the 1,351 completed surveys were explored using a content analysis process. According to Berg (2007), content analysis is “a careful, detailed systematic examination and interpretation of a particular body of material in an effort to identify patterns, themes, biases and meaning” (p. 303). After the two open-ended questions had been examined for themes, patterns, and shared perspectives, I analysed the data according to a framework offered by Miles and Huberman (1994), which comprises the steps: data collection, data reduction, data display, and conclusion drawing/verification. The themes drawn from the qualitative data are displayed in Table 5. For responses to the Likert scale items, descriptive statistics (weighted mean) were used to analyse collected data.
Findings

For the Likert scale items, the number of participants registering a scale rating (i.e., 1 - 5) and the weighted mean for each question item has been included. Within Table 4, a higher weighted mean represents stronger agreement with the question item, while a lower weighted mean represents stronger disagreement. In descending order, the five question items “Other courses are more viable/more attractive”, “Dissatisfaction with mathematics”, “Maximise ATAR without higher maths”, “Higher mathematics not scaled”, and “Not needed for university entrance” registered the highest weighted means. At the same time, question items “Not offered at our school”, “Gender-related issues”, and a “Lack of qualified staff” received the lowest weighted means.

Table 4
Responses to Likert-Scale Question Items

<table>
<thead>
<tr>
<th>Question item</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>Weighted mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>Other courses more viable/attractive</td>
<td>38</td>
<td>112</td>
<td>262</td>
<td>549</td>
<td>383</td>
<td>3.83</td>
</tr>
<tr>
<td>Dissatisfaction with mathematics</td>
<td>99</td>
<td>213</td>
<td>467</td>
<td>413</td>
<td>152</td>
<td>3.22</td>
</tr>
<tr>
<td>Maximise ATAR without higher maths</td>
<td>94</td>
<td>228</td>
<td>489</td>
<td>404</td>
<td>128</td>
<td>3.18</td>
</tr>
<tr>
<td>Higher mathematics not scaled</td>
<td>200</td>
<td>250</td>
<td>315</td>
<td>278</td>
<td>301</td>
<td>3.17</td>
</tr>
<tr>
<td>Not needed for university entrance</td>
<td>160</td>
<td>303</td>
<td>322</td>
<td>377</td>
<td>185</td>
<td>3.09</td>
</tr>
<tr>
<td>Compulsory subject selections</td>
<td>324</td>
<td>305</td>
<td>366</td>
<td>243</td>
<td>101</td>
<td>2.62</td>
</tr>
<tr>
<td>Friends doing the same courses</td>
<td>343</td>
<td>373</td>
<td>355</td>
<td>220</td>
<td>52</td>
<td>2.45</td>
</tr>
<tr>
<td>Dislike the teachers</td>
<td>415</td>
<td>328</td>
<td>318</td>
<td>187</td>
<td>95</td>
<td>2.42</td>
</tr>
<tr>
<td>Timetabling constraints</td>
<td>485</td>
<td>360</td>
<td>308</td>
<td>138</td>
<td>43</td>
<td>2.17</td>
</tr>
<tr>
<td>Lack of qualified staff</td>
<td>707</td>
<td>262</td>
<td>201</td>
<td>100</td>
<td>67</td>
<td>1.92</td>
</tr>
<tr>
<td>Gender-related issues</td>
<td>863</td>
<td>228</td>
<td>170</td>
<td>41</td>
<td>39</td>
<td>1.63</td>
</tr>
<tr>
<td>Not offered at our school</td>
<td>1098</td>
<td>92</td>
<td>95</td>
<td>26</td>
<td>27</td>
<td>1.34</td>
</tr>
</tbody>
</table>

Table 5
Summary of Extended Answer Questions (Responses to Questions 4 and 5)

<table>
<thead>
<tr>
<th>Key Themes</th>
<th>Question 4</th>
<th>Question 5</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dissatisfaction with mathematics</td>
<td>215</td>
<td>558</td>
<td>773</td>
</tr>
<tr>
<td>Other courses are more viable/more attractive</td>
<td>108</td>
<td>282</td>
<td>390</td>
</tr>
<tr>
<td>Higher mathematics courses are not scaled sufficiently</td>
<td>102</td>
<td>60</td>
<td>162</td>
</tr>
<tr>
<td>Not needed for university entrance</td>
<td>60</td>
<td>73</td>
<td>133</td>
</tr>
<tr>
<td>ATAR can be maximised taking a lower maths course</td>
<td>76</td>
<td>55</td>
<td>131</td>
</tr>
<tr>
<td>Not needed for future life or career</td>
<td>33</td>
<td>72</td>
<td>105</td>
</tr>
<tr>
<td>Dissatisfaction with higher mathematics teachers</td>
<td>52</td>
<td>46</td>
<td>98</td>
</tr>
</tbody>
</table>

For Questions 4 and 5, the most commonly proffered qualitative responses included a dissatisfaction with mathematics, a decision to enrol in more attractive or viable courses, and a perception that mathematics is insufficiently scaled as a Year 12 course (see Table
5). These qualitative responses (which have been summarised in Table 5 with other responses) will now be explored.

Dissatisfaction with Mathematics

Participants asserted that the chief reason that secondary students did not enrol in a higher mathematics was due to a dissatisfaction with mathematics. Such dissatisfaction was registered via a variety of associated themes, including a perceived discrepancy between the complexity and workload of Applications and Methods courses, an acknowledged mismatch between effort and reward, a lack of confidence to study a higher mathematics, and an expressed lack of interest or enjoyment in the subject. The most frequently expressed theme by participants was the perceived discrepancy between Mathematics Applications and Methods courses, particularly in terms of overall workload and complexity of content (Q4: 139/215, Q5: 395/558). For instance, one participant reflected on this perceived discrepancy between courses:

I was previously enrolled in Methods, however I found it extremely hard. I had never received such low scores in maths. Now being in Applications, I have noticed that the topics studied are completely unrelated to Methods. It’s not necessarily that Methods students are learning a harder level of math, they are learning a completely different topic which is harder to understand. I didn’t see how what we learnt applied to real life like the topics we learnt in Applications do. I think there needs to be a bit of consistency in the topics. I also found Methods stressful as we went through the topics very fast.

From those participants asserting that students’ dissatisfaction with mathematics stemmed from a perceived discrepancy between Applications and Methods courses, many proposed that an “in-between” course needs to be developed and offered to students. According to those participants, such a course would contain a considerable amount of content common to both Methods and Applications courses, and pitched at a level of difficulty in between those courses.

Other Courses are Viable/More Attractive

The second most common assertion participants made was that secondary students tend to enrol in those courses of study that appear to be more viable or more attractive than a higher mathematics course. In particular, participant responses regarding “course viability” or “course attractiveness” were further classified into the following associated themes: Students chose a “lower” mathematics course in order to excel at it, observed that lower courses were less stressful to undertake, rationalised that undertaking a lower mathematics course translated into less time studying mathematics and more time to allocate to other ATAR courses, and decided to broaden the variety of ATAR courses studied. The most commonly occurring theme was that students felt that undertaking a lower mathematics course required them to devote less time to mathematics study and to set aside more time to successfully complete other ATAR courses (Q4: 43/108, Q5: 123/282). To illustrate, a participant stated:

I feel as though I prefer to do really well in Applications than have to struggle through Methods with only satisfactory results. It also means I can put more effort into other subjects as I am not having to spend hours and hours of my time doing maths each week.

Another participant advanced this statement, rationalising how taking a lower mathematics course translated into increased time for other courses and a higher ATAR overall:
I think that people don’t choose higher maths because the[se subjects] are subjects that require an increased amount of time and effort. You have to weigh up whether or not doing very well in Applications is going to be better for your ATAR than just doing average in Methods. I know for me, I would love to take a higher level maths; however, I wouldn’t have time with my other subjects to do as well, and higher maths [subjects] generally don’t get scaled enough. So overall it would be detrimental to my ATAR.

A further concession made by many participants was that on top of the perceived extra effort and workload associated with higher mathematics courses, taking a lower mathematics course would not only increase their ATAR score but improve their chances of being accepted into their desired university degree course.

Higher Mathematics Courses are not Scaled Sufficiently

Several participants (Q4: 102, Q5: 60) intimated that the reason that students do not enrol in a harder mathematics course was due to insufficient scaling or incentives. For example, one participant reinforced some previous key findings by arguing “Higher mathematics courses are not scaled enough. The difference between Applications and Methods in hardness is not compensated by scaling. People are better off doing Applications in terms of time spent on the subject and difficulty”. Other participants felt that by completing the Mathematics Applications course instead of Mathematics Methods, their mathematics result would be impacted greater by scaling measures. To illustrate, a participant hypothesised:

If I dropped down to Maths Applications due to the impractical scaling of the two maths subjects (Methods and Applications) I could achieve a better ATAR by getting much higher results which are only scaled down a small amount instead of getting mid-range results which scale up by a small amount. This is seen by many students [who] I know drop down in both the current Year 12 cohort and the Year 11 cohort, this is not rational as harder maths courses are not rewarded per se for their extra effort.

There were some participants who drew attention to the 10% bonus marks offered by the School Curriculum and Standards Authority (SCSA) to Year 12 students completing Mathematics Methods or Mathematics Specialist courses from 2017 onwards. One participant stated:

Especially for this year, Methods and Specialist will not be given the 10% additional bonus if it is in your top score. Those harder subjects are not scaled much so the same amount of effort required a 65 in Methods could get a 90 in Applications, allows the people who do easier maths to get a higher ATAR…please explain how that is fair at all?

All participants who voiced concerns over insufficient scaling or incentivisation of higher mathematics courses based their reasoning upon a perceived difference in difficulty between courses (e.g., Methods and Applications), a drastically different scaling method to be used for easier or more difficult courses, the maximisation of the ATAR by taking the easier mathematics course, and the incentive offered to students from 2017 onwards. Irrespective of reason, all participants expressed that scaling procedures influenced their decision not to enrol in a higher mathematics course.

Conclusion

The purpose of this research paper was to outline reasons why Year 11 and Year 12 ATAR mathematics students in Western Australia do not enrol in higher-level mathematics courses. I identified three key findings via Likert-scale items (Table 4) and open questions (Table 5) for further consideration. First, students indicated dissatisfaction with the
perceived discrepancy in difficulty of Methods and Applications courses currently offered in Western Australian schools. Aside from the apparent “jump” in content complexity between these courses, students feel that the time and effort spent on undertaking a more difficult course (i.e., Methods) is unrewarded. At the same time, students suggested that the creation of a mathematics course whose level of difficulty lay in between Methods and Applications would assist in reducing the current discrepancy and consequently encourage more students to enrol in it.

Second, students feel that undertaking an easier mathematics course will allow additional time to focus on other ATAR courses. The themes associated with this finding suggest that students are interested in adopting a balanced approach to their studies where they can apportion a similar amount of time and effort to mathematics as their other ATAR courses for maximal reward. Additionally, there appears to be an expressed need by students to feel confident in the mathematics course they take; this confidence is brought about by choosing a course where the content can be mastered and the level of stress associated with such mastery is not atypically high compared with other ATAR courses.

Third, students believe that there is an insufficient reward offered for taking a higher mathematics course. For the most part, students nominated that the scaling procedures or a lack of incentivisation deterred them from enrolling in a more difficult course. Interestingly, at the time of data collection, neither the Year 11 nor Year 12 students involved in the study had any foreknowledge of how the scaling process in Western Australia had worked for previous Mathematics Applications, Mathematics Methods, and Mathematics Specialist student cohorts; they would become the first and second cohorts, respectively. Some Year 12 students lamented that in 2017 – when they had completed secondary schooling – they would miss out on the incentive offered by the Tertiary Institutions Service Centre (TISC) to students completing Mathematics Methods and/or Mathematics Specialist courses. Students completing either the Methods course or both Methods and Specialist courses will receive a 10 percent bonus of their final scaled score in those courses (TISC, 2016).

This study builds on the previous research conducted in Western Australia regarding student enrolments in senior secondary mathematics courses (Hine, 2016), in that it sought to engage the student voice. The findings outlined illustrate various tensions regarding students’ decisions not to enrol in a higher-level mathematics course. These tensions appeared to focus more on the students’ short-term goals (e.g., achieving a higher ATAR in an easier course for reduced effort and stress) rather than on the mastery of mathematical concepts required for a career or for further study. Based on these findings, future research efforts could be directed at asking the Year 11 and Year 12 participants the extent to which they feel their choice of secondary mathematics course prepared them adequately for the future (i.e., a longer-term goal). Other efforts could focus on a replica study in the next few years, especially once the bonus marks system for Methods and Specialist has been introduced.

References

