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1 Introduction

The intimate connection between classical differential geometry and its dis-
crete counterpart (discrete differential geometry) and the theory of continu-
ous and discrete integrable systems has been well documented (see, e.g., [2,
9] and references therein). Moreover, Bäcklund transformations provide a link
between classical and discrete differential geometry and, at the algebraic level,
the underlying partial differential and difference equations such as the (dis-
crete) Gauss-Weingarten equations in the case of (discrete) surface theory. For
instance, iterative application of the classical Bäcklund transformation to sur-
faces of constant negative Gaussian curvature and the sine-Gordon equation
as the Gauss equation not only generates discrete analogues of these surfaces
[11,14,1] but also gives rise to Hirota’s discrete sine-Gordon equation [5].

In general, the application of a Bäcklund transformation to an integrable
class of surfaces, that is, a class of surfaces governed by an integrable sys-
tem, requires the solution of a linear system of differential equations (Lax
pair) which depends on a Bäcklund (spectral) parameter [9]. In particular, a
Bäcklund transform of a seed surface consists of a family of surfaces which is
labelled by the Bäcklund parameter. This applies, for instance, to the class of
minimal surfaces in projective differential geometry [9,3]. However, given any
projective minimal surface, there exists an alternative procedure which may
be used to generate an infinite number of projective minimal surfaces. This
classical transformation, which bears the name of Demoulin [10], is purely al-
gebraic in nature and does not involve a Lax pair or a Bäcklund parameter. It
is the aim of this paper to record known and important novel properties of the
classical Demoulin transformation with a view to highlighting its significance
in discrete differential geometry.

A surface Σ in a three-dimensional projective space RP3 comes with a
two-parameter family of Lie quadrics [3,4], each of which has second-order
contact with the surface at the corresponding point. By definition of the Lie
quadric, the surface Σ is an envelope of the family of Lie quadrics but, gener-
ically, there exist four additional envelopes known as Demoulin transforms of
Σ. Remarkably, the Demoulin transforms of projective minimal surfaces are
projective minimal [10,8] so that iterative application of the Demoulin trans-
formation generates an infinite number of projective minimal surfaces. Even
though, in principle, there exist sixteen second generation Demoulin trans-
forms of a projective minimal surface Σ, it is known [10,12] that, generically,
due to coincidence, there exist only nine distinct second generation Demoulin
transforms and one of them is the seed surface Σ. Hence, it is natural to de-
termine the cardinality of the set of projective minimal surfaces generated by
iterative application of the Demoulin transformation and how the individual
surfaces in this set are combinatorially related.

It turns out that the Demoulin transformation generically generates a set
of projective minimal surfaces of Z2 combinatorics which we term a Demoulin
lattice. Any point on the seed surface labelled by (x, y) is mapped to corre-
sponding points on its transforms and, hence, the Demoulin transformation
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generates a two-parameter family of Z2 lattices in RP3. Furthermore, due to
the Weingarten relation [10] between a projective minimal surface and (some
of) its second generation transforms, the even and odd sublattices of any Z2

lattice in this family have planar stars. Hence, for any fixed (x, y), the De-
moulin lattice decomposes into two discrete asymptotic nets. The latter have
been used extensively in discrete differential geometry as a natural discretisa-
tion of asymptotic lines on hyperbolic surfaces [2].

Remarkably, the Lie quadrics attached to the projective minimal surfaces
of the Demoulin lattice may also be interpreted as “lattice Lie quadrics” associ-
ated with the discrete asymptotic nets encoded in the even and odd sublattices.
Hence, we introduce the notion of discrete envelopes of lattice Lie quadrics
and show that any discrete asymptotic net associated with the even Demoulin
sublattice may be regarded as an envelope of the lattice Lie quadrics of the
corresponding discrete asymptotic net associated with the odd Demoulin sub-
lattice and vice versa. Here, we exploit the theory of hyperbolic nets developed
in detail in [6,7].

In view of the classical theory, the above analysis naturally leads to the def-
inition of discrete PMQ-surfaces which are discretisations of either projective
minimal surfaces or so-called Q-surfaces [3]. This is motivated by an impor-
tant theorem in projective differential geometry [3,10] which states that the
asymptotic lines on a surface and at least one Demoulin transform correspond
if and only if the surface is either projective minimal or of Q type. We then
prove the key theorem which asserts that the discrete asymptotic nets encoded
in the Demoulin lattice constitute discrete PMQ-surfaces.

2 Demoulin transformations

2.1 Algebraic classification of projective minimal surfaces

Consider a surface Σ in a three-dimensional projective space RP3 represented
by [r] : R2 → RP3 in terms of asymptotic coordinates (x, y) so that the vector
of homogeneous coordinates r ∈ R4 satisfies a pair of linear equations

rxx = pry + πr + σrx, ryy = qrx + ξr + χry.

Then, it is well known [9,3,10] that particular homogeneous coordinates, known
as the Wilczynski lift, may be chosen such that the functions σ and χ vanish.
Hence, the remaining coefficients of the “projective Gauss-Weingarten equa-
tions” may be parametrised according to

rxx = pry +
1

2
(V − py)r, ryy = qrx +

1

2
(W − qx)r,

in terms of functions p, q, V and W . The latter are constrained by the compati-
bility condition rxxyy = ryyxx which leads to the “projective Gauss-Mainardi-
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Codazzi” equations

pyyy − 2pyW − pWy = qxxx − 2qxV − qVx (1)

Wx = 2qpy + pqy (2)

Vy = 2pqx + qpx. (3)

We note that the Wilczynski lift is unique up to the group of transformations

x→ f(x), y → g(y), r →
√
f ′(x)g′(y) r

with

p→ p
g′(y)

[f ′(x)]2
, q → q

f ′(x)

[g′(y)]2
(4)

V → V + S(f)

[f ′(x)]2
, W → W + S(g)

[g′(y)]2
, (5)

where S denotes the Schwarzian derivative

S(f) =
f ′′′

f ′
− 3

2

(
f ′′

f ′

)2

.

The quadratic form

pq dxdy

is a projective invariant and is known as the projective metric. Throughout
the paper, we shall assume that Σ is not ruled, i.e., pq 6= 0. In view of the
structure of relation (1), we define functions α and β by

α = p2W − ppyy +
p2
y

2
, β = q2V − qqxx −

q2
x

2

so that the Gauss-Mainardi-Codazzi equations (1)-(3) adopt the form

αy
p

=
βx
q

(ln p)xy = pq +
A

p
, Ay = −p

(
α

p2

)
x

(ln q)xy = pq +
B

q
, Bx = −q

(
β

q2

)
y

.

This is directly verified by eliminating the functions A and B. The above
parametrisation turns out to be convenient in connection with the classification
of projective minimal surfaces.

Definition 1 A surface Σ in RP3 is said to be projective minimal if it is
critical for the area functional

∫∫
pq dxdy.
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Theorem 1 ([13]) A surface Σ in RP3 is projective minimal if and only if

αy
p

=
βx
q

= 0.

A projective minimal surface is said to be

(a) generic if α 6= 0 and β 6= 0.
(b) of Godeaux-Rozet type if α 6= 0, β = 0 or α = 0, β 6= 0.
(c) of Demoulin type if α = β = 0. If, in addition, p = q, then Σ is said to be

of Tzitzéica type.

We note that, using a gauge transformation of the form (4), (5), we may
normalise α and β to be one of −1, 1 or 0.

2.2 Geometric classification of projective minimal surfaces

The above algebraic classification admits a corresponding geometric interpre-
tation which involves Lie quadrics and their envelopes.

Definition 2 Let [r] : R2 → RP3 be a parametrisation of a surface Σ in
terms of asymptotic coordinates. Let p = r(x, y) be a point on Σ and let p±
be two additional points on the x-asymptotic line passing through p, given by
p± = r(x± ε, y). Let l± and l be the three lines tangent to the y-asymptotic
lines at p± and p respectively. These uniquely define a quadric Qε containing
them as rectilinear generators. The Lie quadric at (x, y) is then the unique
quadric defined by

Q(x, y) = lim
ε→0

Qε(x, y).

Remark 1 It turns out that the above definition of a Lie quadric is symmetric
in x and y, that is, interchanging x-asymptotic lines and y-asymptotic lines
leads to the same Lie quadric Q.

An explicit representation of the Lie quadric Q (at a point) is given below
[3,4]. For brevity, in the following, we do not distinguish between a Lie quadric
in RP3 and its representation in the space of homogeneous coordinates R4.

Theorem 2 The Lie quadric Q admits the parametrisation

Q = n + µr1 + νr2 + µνr,

where µ and ν parametrise the two families of generators of Q and {r, r1, r2, n}
is the Wilczynski frame given by

r = r, r
1 = rx −

qx
2q

r, r
2 = ry −

py
2p

r

n = rxy −
py
2p

rx −
qx
2q

ry +

(
pyqx
4pq

− pq

2

)
r.
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We note that the lines (r, r1) and (r, r2) are tangent to Σ. The line (r, n) is
transversal to Σ and plays the role of a projective normal. It is known as the
first directrix of Wilczynski.

Definition 3 A surface Ω parametrised by [ω] : R2 → RP3 is an envelope of
the two parameter family of Lie quadrics {Q(x, y)} associated with a surface
Σ if ω(x, y) ∈ Q(x, y) such that Ω touches Q(x, y) at ω(x, y).

We note that, in particular, Σ is itself an envelope of {Q}. Generically, there
exist four additional envelopes as stated below [3].

Theorem 3 If α, β ≥ 0 then the Lie quadrics {Q} possess four real additional
envelopes

ω++ = n + µ̂r1 + ν̂r2 + µ̂ν̂r

ω+− = n + µ̂r1 − ν̂r2 − µ̂ν̂r
ω−+ = n− µ̂r1 + ν̂r2 − µ̂ν̂r
ω−− = n− µ̂r1 − ν̂r2 + µ̂ν̂r,

where

µ̂ =

√
α

2p2
, ν̂ =

√
β

2q2
.

These are distinct if α, β 6= 0.

Remark 2 The above envelopes are called the Demoulin transforms of Σ. We
denote them by Σ++, Σ+−, Σ−+ and Σ−−.

As indicated in the above theorem, the expressions for µ̂ and ν̂ imply that
whether α and β vanish or not is related to the distinct number of envelopes.
The geometric interpretation of the algebraic classification (a)-(c) is then that
a projective minimal surface Σ is

(a) generic if the set of Lie quadrics {Q} has four distinct additional envelopes.
(b) of Godeaux-Rozet type if {Q} has exactly two distinct additional en-

velopes.
(c) of Demoulin type if {Q} has exactly one additional envelope.

Remark 3 Theorem 3 implies that a surface Σ in RP3 is necessarily projec-
tive minimal if there exist less than four additional distinct envelopes. Specifi-
cally, if the Lie quadrics of Σ have only two additional distinct envelopes then
Σ is of Godeaux-Rozet type. If the Lie quadrics of Σ have only one additional
envelope then Σ is of Demoulin type.

Remark 4 For any fixed (x, y), the points ω++(x, y), ω+−(x, y), ω−−(x, y)
and ω−+(x, y) of the Demoulin transforms of Σ may be regarded as the vertices
of a quadrilateral

[ω++(x, y), ω+−(x, y), ω−−(x, y), ω−+(x, y)]



The Demoulin transformation and discrete projective minimal surfaces 7

which is known as the Demoulin quadrilateral. Then, the parametrisation of the
envelopes in Theorem 3 shows that the extended edges [ω++(x, y), ω+−(x, y)],
[ω+−(x, y), ω−−(x, y)], [ω−−(x, y), ω−+(x, y)] and [ω−+(x, y), ω++(x, y)] are
generators of the Lie quadric Q(x, y). This induces a natural pairing between
the Demoulin transforms corresponding to the diagonal of the Demoulin quadri-
lateral. We thus call Σ++ and Σ−− opposite transforms and, similarly, Σ+−
and Σ−+ are opposite transforms.

Fig. 1: The Demoulin quadrilateral

It turns out that the Demoulin transformation acts within the class of
projective minimal surfaces and within the classes (a)-(c) [10,8].

Theorem 4 Let Σ be a projective minimal surface. Then, each of its De-
moulin transforms is projective minimal. Moreover, the number n ∈ {1, 2, 4}
of distinct Demoulin transforms of Σ is preserved by the Demoulin transfor-
mation. In particular, if Σ is of Godeaux-Rozet type then each of its Demoulin
transforms is of Godeaux-Rozet type. If Σ is of Demoulin type then its trans-
form is of Demoulin type.

2.3 Iteration of the Demoulin transformation

Let Σ be a generic projective minimal surface. Then, it has four distinct De-
moulin transforms which we call first generation Demoulin transforms. Each
of these transforms again has four Demoulin transforms which we call second
generation transforms. We arrange Σ and the four first generation transforms
in a star of a Z2 lattice with coordinates (n1, n2) in such a way that opposite
transforms are placed at vertices which correspond to an increment or decre-
ment of the same coordinate, and Σ is placed at the centre of the star. We
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denote an increment of nk by a subscript k and a decrement by a subscript k̄
as in Figure 2.

Fig. 2: First generation Demoulin transforms

The following theorem expresses the remarkable known fact that only nine
of the sixteen second generation transforms of a generic projective minimal
surface Σ are distinct, one of which is Σ [10,12].

Theorem 5 Let Σ be a generic projective minimal surface and Σθ its De-
moulin transforms with θ = 1, 1̄, 2, 2̄. Then,

(i) Σ is a Demoulin transform of each Σθ,
(ii) Σθ and Σλ, θ 6= λ, have a common transform different from Σ if and

only if they are not opposite transforms.

The above theorem implies thatΣ1 andΣ2 have a common transform which we
denote by Σ12. Similarly, we have Σ1̄2, Σ1̄2̄ and Σ12̄ as displayed in Figure 3.
The remaining Demoulin transform of Σ1 is denoted by Σ11 and, similarly, we
define Σ1̄1̄, Σ22 and Σ2̄2̄. These are then the eight distinct second generation
transforms different from Σ as stated above.
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Fig. 3: The combinatorics of first and second generation Demoulin transforms

Even though Figure 3 is merely a combinatorial re-arrangement of the
known relations between a generic projective minimal surface and its first and
second generation Demoulin transforms, it gives rise to the novel observation
that iterative application of the Demoulin transformation leads to an infinite
number of projective minimal surfaces which may be combinatorially attached
to the vertices of a Z2 lattice.

Theorem 6 The set of all (iterated) Demoulin transforms of a generic pro-
jective minimal surface Σ forms a Z2 lattice of projective minimal surfaces.

Proof Consider the second generation transforms Σ12 and Σ22. Then, by Theo-
rem 5, there exists a common Demoulin transform Σγ of Σ12 and Σ22. More-
over, Theorem 5 also implies that this surface is distinct from Σ2 and thus
distinct from its opposite transform with respect to Σ12. Thus, there exist only
two possibilities for Σγ , namely Σ1 and its opposite transform. If Σγ were Σ1

then Σ22 would be a common transform of Σ1 and Σ2 and, hence, Σ12 would
coincide with Σ22 which would be a contradiction since these are distinct sur-
faces. Hence, Σγ is the opposite transform which we denote by Σ122. Similarly,
the common Demoulin transform between Σ1̄2 and Σ22 can be seen to be the
opposite transform to Σ122. We denote the remaining transform of Σ22 by
Σ222. Continuing in this manner, we can generate a Z2 lattice of Demoulin
transforms of Σ, part of which is shown in Figure 4.
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Fig. 4: Part of the Z2 Demoulin lattice

We will now examine in detail the combinatorial and geometric implications
of Theorem 6.

3 The Demoulin lattice

We denote the set of projective minimal surfaces in RP3 byM and the corre-
sponding lattice in Theorem 6 by

Σ : Z2 →M,

where Σ(0, 0) is the seed surface and Σ(n1, n2) is a Demoulin transform of
generation |n1|+|n2|. If Σ(0, 0) is represented by [r] : R2 → RP3 then iterative
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application of the Demoulin transformation generates a map of the form

r : R2 × Z2 → R4, (6)

where, for a fixed (n1, n2) ∈ Z2, r describes a projective minimal surface
and, for a fixed (x, y), r describes a Z2 lattice of points on projective minimal
surfaces related by Demoulin transformations. We will sometimes suppress x
and y or n1 and n2 when the context is clear in order to think of r as a map
r : Z2 → R4 or r : R2 → R4. For a fixed (x, y), each lattice point is the point
of contact of a Lie quadric and the corresponding surface. Thus, we can define
a two-parameter family of lattices of Lie quadrics

Q : R2 × Z2 → {quadrics in RP3}. (7)

It turns out that, for a fixed (x, y), the two sublattices corresponding to even
and odd generation transforms of Σ have distinctive geometric properties.

3.1 Asymptotic sublattices and associated Lie quadrics

Theorem 7 ([10]) Let Σ be a generic projective minimal surface. Then, the
line connecting a point on Σ and the corresponding point on any one of its
coincidental second generation Demoulin transforms (i.e., Σ12, Σ1̄2, Σ12̄ and
Σ1̄2̄) is tangent to both surfaces.

Remark 5 We note that by varying the x and y parameters on Σ, for each
coincidental second generation Demoulin transform Σθλ, we obtain a two-
parameter family of lines connecting Σ and Σθλ. Hence, these families of lines
form W-congruences [10].

As a result of Theorem 7, for a fixed (x, y), it is then natural to distinguish
between the even and odd sublattices of r : Z2 → R4. Moreover, due to the
existence of the W-congruences, each of these sublattices contains planar stars
(regarded as objects in RP3). Z2 lattices whose stars are planar are termed
discrete asymptotic nets. These are known [2] to be canonical discrete versions
of surfaces parametrised in terms of asymptotic coordinates. Accordingly, the
following theorem holds.

Theorem 8 The lattice of Demoulin transforms of a projective minimal sur-
face Σ, evaluated at a point (x, y), decomposes into two discrete asymptotic
nets corresponding to even and odd generation Demoulin transforms.
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Fig. 5: A pair of discrete asymptotic nets (long and short dashes) obtained by restricting a
Demoulin lattice of surfaces to a fixed point (x, y)

In particular, since the vertices r1, r2, r1̄ and r2̄ of one sublattice are the ver-
tices of the Demoulin quadrilateral associated with the Lie quadric Q combina-
torially attached to the vertex r of the other sublattice, each sublattice is com-
posed of Demoulin quadrilaterals. This raises the question as to the geomet-
ric nature of the relation between neighbouring quadrilaterals. A non-planar
quadrilateral admits a one-parameter family of quadrics passing through the
edges. Moreover, it is known [6] that, given a fixed member Q of this family,
there exists exactly one quadric in a neighbouring family of quadrics whose
tangent planes along the common edge coincide with those of Q. We call this
relation between neighbouring quadrics the C1 property. Given two quadrics
Qb and Qd, as in Figure 6, which satisfy the C1 condition with respect to a
quadric Qa, there exist two ways of generating the quadric Qc arising from the
C1 condition with respect to Qb, and with respect to Qd. Remarkably, the two
quadrics generated in this way coincide [6]. Thus, for any fixed quadric Q in
the one-parameter family of quadrics passing through a quadrilateral of a dis-
crete asymptotic net, the C1 condition uniquely determines quadrics passing
through all remaining quadrilaterals. This leads to the following definition.
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Fig. 6: Quadrics on an asymptotic sublattice

Definition 4 A set of quadrics {Q} associated with the quadrilaterals of a
discrete asymptotic net is termed a set of lattice Lie quadrics if the C1 condition
holds for all neighbouring pairs of quadrics.

A justification for this terminology is as follows. Let r: Z2 → R4 be a discrete
asymptotic net and {Q} a set of associated lattice Lie quadrics. Let Q̂ be
the unique quadric passing through the lines (r r2), (r1 r12) and (r11 r112)
(cf. Figure 7). We note that in the limit in the n2 direction, the lines (r r2),
(r1 r12) and (r11 r112) become tangent lines to the coordinate curves of a
semi-discrete asymptotic net. Hence, by Definition 2, in the continuum limit,
Q̂ becomes a Lie quadric. Let p0 be a point on the line (r r2). Then, there
exists a unique generator of Q̂ through p0 which intersects the line (r11 r112)
at a point p1. p1 can be thought of as the intersection of the plane spanned
by p0, r1 and r12 and the line (r11 r112). On the other hand, let Q and Q1 be
neighbouring lattice Lie quadrics, as in Figure 7. Then, there exists a unique
generator of Q through p0 which intersects the line (r1 r12) at a point p3.
Similarly, there exists a unique generator of Q1 through p3 which intersects
the line (r11 r112) at a point p2. p2 can be thought of as the intersection of
the tangent plane to Q at p3 and the line (r11 r112). Then, as a result of the
C1 condition, p0, p2, r1 and r12 are coplanar. Hence, p1 = p2. Therefore, it is
evident that in the continuum limit the generators (p0 p1), (p0 p3) and (p3 p2)
coincide. Hence, in the continuum limit, the quadrics Q, Q1 and Q̂ coincide.
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Thus, the lattice Lie quadrics of the discrete asymptotic net formally converge
to the Lie quadrics of the limiting continuous surface.

Fig. 7: A 3 × 2 patch of a discrete asymptotic net

Remarkably, the (surface) Lie quadrics attached to the vertices of one sub-
lattice of the Demoulin lattice turn out to form a set of lattice Lie quadrics of
the other sublattice. In order to show this, we need the following theorem.

Fig. 8: A patch of a discrete asymptotic net with associated quadrics obeying the assumptions
of Theorem 9

Theorem 9 Let Σ be a 3×3 patch of a discrete asymptotic net containing four
adjacent quadrilaterals �a, �b, �c and �d as in Figure 8. Let Qa, Qb, Qc and
Qd be four quadrics in the one-parameter families of quadrics passing through
�a, �b, �c and �d respectively. Given four points qa, qb, qc and qd on each
of these quadrics (which do not coincide with the vertices of the corresponding

quadrilaterals), if the edges of the quadrilateral �̂ = [qa, qb, qc, qd] touch the
respective quadrics at the points qa, qb, qc and qd, and there exists a quadric

Q̂ passing through �̂ which touches the planar star at the central vertex of Σ
then the quadrics Qa, Qb, Qc and Qd satisfy the C1 condition.
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Proof We label the vertices of Σ by pa,pb,pc,pd,pab,pbc,pcd,pad and p0 as
in Figure 8. We show that the C1 condition holds between Qa and Qb. The
other C1 conditions are treated similarly. We may write Qa(µα, να) as

Qa(µα, να) = pa + µαpab + ναpad + µαναp0.

Then, since qa is a point on Qa, there exist (µa, νa) and λa such that

Qa(µa, νa) = λaqa,

hence
pa = λaqa − µapab − νapad − µaνap0.

Furthermore, the assumption that [qa, qb, qc, qd] touches Qa, which means that
the plane spanned by the edges (qa qb) and (qa qd) and the tangent plane of
Qa at qa coincide, determines (µa, νa) in terms of pab and pad. We can derive
similar expressions for pb, pc and pd in terms of λb, λc and λd respectively.
Here, and in the following, we suppress the details of the somewhat lengthy
calculations and merely focus on the idea of the proof. Coplanarity of pa, pab,
pb and p0 determines an expression for λb in terms of λa. Similarly, we can
determine an expression for λc in terms of λb and, hence, in terms of λa.
Finally, λd may also be expressed in terms of λa. However, the planarity of
the star with vertices pa,pd,pad and p0 allows us to write λa in terms of λd,
which determines λa uniquely. Hence, we have established explicit expressions
for pa, pb, pc and pd in terms of pab, pad, pcd and pbc. In order to verify the
C1 condition between Qa and Qb, we now reparametrise the two quadrics Qa
and Qb according to

Qa ∼ pab + µ̃αpa + ν̃αp0 + µ̃αν̃αpad

Qb ∼ pab + µ̃βpb + ν̃βp0 + µ̃β ν̃βpbc,

where µ̃α = 1/µα and ν̃α = να. Any point X on the common edge between Qa
and Qb is then parametrised in two ways, namely

X ∼ pab + ν̃αp0 ∼ pab + ν̃βp0

for suitable parameters ν̃α and ν̃β which are evidently related by ν̃α = ν̃β. The
C1 condition is then given by∣∣∣∣p0, X,

∂

∂µ̃α
Qa,

∂

∂µ̃β
Qb

∣∣∣∣ = 0,

evaluated at ν̃α = ν̃β. This reduces to

|p0, pab, pa + ν̃αpad, pb + ν̃αpbc| = 0,

so that
|p0, pab, pad, pb|+ |p0, pab, pa, pbc| = 0,

by virtue of the co-planarity of the points p0, pab, pad, pbc and the points
p0, pab, pa, pb. The above-mentioned expressions for pa and pb may now be
used to verify that this condition is identically satisfied.
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We now return to the even sublattice of the Demoulin lattice (Figure 5). Then,
associated with the quadrilateral [r, r1̄2̄, r2̄2̄, r12̄] is a quadric Q2̄, which is the
Lie quadric corresponding to the surface Σ2̄ at the point r2̄. In the same
manner, we may associate Lie quadrics Q1, Q1̄ and Q2 with the quadrilat-
erals [r, r12̄, r11, r12], [r, r1̄2̄, r1̄1̄, r1̄2] and [r, r1̄2, r22, r12] respectively of the
even sublattice. We can think of Q2̄, Q1, Q2 and Q1̄ as playing the role of
Qa, Qb, Qc and Qd in Theorem 9. Similarly, we may also associate a Lie
quadric with each quadrilateral of the odd sublattice. In particular, we may
think of the quadricQ passing through the edges of the quadrilateral [r1, r2, r1̄,
r2̄] of the odd sublattice as being the quadric Q̂ in Theorem 9. Q̂ touches
the planar star of the even sublattice at r and, moreover, as a result of the
W-congruence property, the quadrilateral [r1, r2, r1̄, r2̄] touches the quadrics
Q1, Q2, Q1̄ and Q2̄ at the points r1, r2, r1̄ and r2̄ respectively. Thus, the even
sublattice and the quadrics associated with the quadrilaterals of this sublattice
satisfy the conditions of Theorem 9. Hence, the quadrics Q2̄, Q1, Q2 and Q1̄

satisfy the C1 condition. Similarly, the quadrics associated with the quadrilat-
erals of the odd sublattice satisfy the C1 condition. Thus, we have come to the
following conclusion.

Theorem 10 Let Σ be the Demoulin lattice of a projective minimal surface
evaluated at a point (x, y). Then, the quadrics associated with the quadrilaterals
of the even (or odd) sublattice of Σ satisfy the C1 condition and therefore
constitute a set of lattice Lie quadrics for the even (or odd) sublattice.

3.2 Discrete envelopes and discrete projective minimal surfaces

In order to proceed, it is now required to introduce the notion of discrete
envelopes of lattice Lie quadrics.

Definition 5 A discrete envelope of a set of lattice Lie quadrics {Q} is a Z2

lattice such that each star touches the corresponding lattice Lie quadric.

Remark 6 By construction, a discrete envelope constitutes a discrete asymp-
totic net since each star lies in the tangent plane of the corresponding lattice
Lie quadric at the point of contact. It is evident that the existence of a discrete
envelope represents a constraint on the original discrete asymptotic net.

As a result of Theorem 10, we can now think of the even and odd sublattices
of the Demoulin lattice, evaluated at a point (x, y), as discrete envelopes of
lattice Lie quadrics since the planar stars of one sublattice touch the lattice
Lie quadrics of the other sublattice. In the classical case, we say that a surface
Σ and one of its Demoulin transforms are in asymptotic correspondence if the
asymptotic coordinates on Σ are mapped to the asymptotic coordinates on
the Demoulin transform. We use the following theorem relating a surface in
RP3 and its Demoulin transforms to motivate discretisation [3,10].

Theorem 11 A surface Σ and at least one of its Demoulin transforms are
in asymptotic correspondence if and only if Σ is projective minimal or a Q-
surface.
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Remark 7 We call a surface which is in asymptotic correspondence with one
of its Demoulin transforms a PMQ-surface. Separating Q-surfaces from pro-
jective minimal surfaces requires additional geometric and algebraic analysis
which is beyond the scope of this paper. We note, however, that at least one of
the envelopes of a Lie quadric of a Q-surface is itself a quadric [3].

In view of Remark 6, the following definition is natural.

Definition 6 A discrete PMQ-surface is a discrete asymptotic net
[r] : Z2 → RP3 which admits an associated discrete envelope.

Remark 8 By construction, discrete PMQ-surfaces are discrete analogues of
projective minimal or Q-surfaces. Even though the above definition essentially
captures the definition of discrete projective minimal surfaces by factoring out
discrete analogues of Q-surfaces, as in the continuous case, differentiating dis-
crete Q-surfaces and discrete projective minimal surfaces requires further anal-
ysis. This is the subject of a separate publication.

We conclude the paper with the following key result.

Theorem 12 The even and odd sublattices of the Demoulin lattice of a pro-
jective minimal surface, evaluated at a point (x, y), constitute discrete PMQ-
surfaces.
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