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1 Introduction

The intimate connection between classical differential geometry and its dis-
crete counterpart (discrete differential geometry) and the theory of continu-
ous and discrete integrable systems has been well documented (see, e.g., [2,
9] and references therein). Moreover, Bicklund transformations provide a link
between classical and discrete differential geometry and, at the algebraic level,
the underlying partial differential and difference equations such as the (dis-
crete) Gauss-Weingarten equations in the case of (discrete) surface theory. For
instance, iterative application of the classical Backlund transformation to sur-
faces of constant negative Gaussian curvature and the sine-Gordon equation
as the Gauss equation not only generates discrete analogues of these surfaces
[11,14,1] but also gives rise to Hirota’s discrete sine-Gordon equation [5].

In general, the application of a Backlund transformation to an integrable
class of surfaces, that is, a class of surfaces governed by an integrable sys-
tem, requires the solution of a linear system of differential equations (Lax
pair) which depends on a Bécklund (spectral) parameter [9]. In particular, a
Béacklund transform of a seed surface consists of a family of surfaces which is
labelled by the Backlund parameter. This applies, for instance, to the class of
minimal surfaces in projective differential geometry [9,3]. However, given any
projective minimal surface, there exists an alternative procedure which may
be used to generate an infinite number of projective minimal surfaces. This
classical transformation, which bears the name of Demoulin [10], is purely al-
gebraic in nature and does not involve a Lax pair or a Backlund parameter. It
is the aim of this paper to record known and important novel properties of the
classical Demoulin transformation with a view to highlighting its significance
in discrete differential geometry.

A surface ¥ in a three-dimensional projective space RP3 comes with a
two-parameter family of Lie quadrics [3,4], each of which has second-order
contact with the surface at the corresponding point. By definition of the Lie
quadric, the surface X' is an envelope of the family of Lie quadrics but, gener-
ically, there exist four additional envelopes known as Demoulin transforms of
X. Remarkably, the Demoulin transforms of projective minimal surfaces are
projective minimal [10,8] so that iterative application of the Demoulin trans-
formation generates an infinite number of projective minimal surfaces. Even
though, in principle, there exist sixteen second generation Demoulin trans-
forms of a projective minimal surface X, it is known [10,12] that, generically,
due to coincidence, there exist only nine distinct second generation Demoulin
transforms and one of them is the seed surface Y. Hence, it is natural to de-
termine the cardinality of the set of projective minimal surfaces generated by
iterative application of the Demoulin transformation and how the individual
surfaces in this set are combinatorially related.

It turns out that the Demoulin transformation generically generates a set
of projective minimal surfaces of Z? combinatorics which we term a Demoulin
lattice. Any point on the seed surface labelled by (z,y) is mapped to corre-
sponding points on its transforms and, hence, the Demoulin transformation
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generates a two-parameter family of Z? lattices in RP3. Furthermore, due to
the Weingarten relation [10] between a projective minimal surface and (some
of) its second generation transforms, the even and odd sublattices of any Z?
lattice in this family have planar stars. Hence, for any fixed (z,y), the De-
moulin lattice decomposes into two discrete asymptotic nets. The latter have
been used extensively in discrete differential geometry as a natural discretisa-
tion of asymptotic lines on hyperbolic surfaces [2].

Remarkably, the Lie quadrics attached to the projective minimal surfaces
of the Demoulin lattice may also be interpreted as “lattice Lie quadrics” associ-
ated with the discrete asymptotic nets encoded in the even and odd sublattices.
Hence, we introduce the notion of discrete envelopes of lattice Lie quadrics
and show that any discrete asymptotic net associated with the even Demoulin
sublattice may be regarded as an envelope of the lattice Lie quadrics of the
corresponding discrete asymptotic net associated with the odd Demoulin sub-
lattice and vice versa. Here, we exploit the theory of hyperbolic nets developed
in detail in [6,7].

In view of the classical theory, the above analysis naturally leads to the def-
inition of discrete PMQ-surfaces which are discretisations of either projective
minimal surfaces or so-called Q-surfaces [3]. This is motivated by an impor-
tant theorem in projective differential geometry [3,10] which states that the
asymptotic lines on a surface and at least one Demoulin transform correspond
if and only if the surface is either projective minimal or of Q type. We then
prove the key theorem which asserts that the discrete asymptotic nets encoded
in the Demoulin lattice constitute discrete PMQ-surfaces.

2 Demoulin transformations
2.1 Algebraic classification of projective minimal surfaces

Consider a surface X in a three-dimensional projective space RP? represented
by [r] : R? — RP? in terms of asymptotic coordinates (z,y) so that the vector
of homogeneous coordinates r € R* satisfies a pair of linear equations

Tex = PPy + TP + 0Ty, Tyy = qry +E7 + XTy.

Then, it is well known [9,3,10] that particular homogeneous coordinates, known
as the Wilczynski lift, may be chosen such that the functions ¢ and x vanish.
Hence, the remaining coefficients of the “projective Gauss-Weingarten equa-
tions” may be parametrised according to

1 1
Tyx = PTy + i(v _py)ra Tyy = qTy + E(W - Qm)rv

in terms of functions p, ¢, V and W. The latter are constrained by the compati-
bility condition 745y, = Tyyze Which leads to the “projective Gauss-Mainardi-
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Codazzi” equations

Pyyy — 2pyW _pWy = Qrazax — QQwV — qu; (1)
Wa = 2qpy + pay (2)
Vy = 2pga + qpe- (3)

We note that the Wilczynski lift is unique up to the group of transformations

r— f(x), y—=9y), r—=Vf(2)dyr

with
q'(y) f(x)
PR 1T P )
V+S(f) W+ S(g)
" eeE VT e (5)

where S denotes the Schwarzian derivative
f/// 3 f// 2
s =1-5 (%)
o2\ f
The quadratic form

pq dzdy

is a projective invariant and is known as the projective metric. Throughout
the paper, we shall assume that X is not ruled, i.e., pg # 0. In view of the
structure of relation (1), we define functions a and 8 by

»; 0
a=pW —ppy + 5 B=0"V —4g —
so that the Gauss-Mainardi-Codazzi equations (1)-(3) adopt the form

ay _ B
p q

A
(Inp)ey = pg + >’ Ay=—p (P2>w

B p
(Ing)ey =pg+—, Bs=—q (2> :
q ?),
This is directly verified by eliminating the functions A and B. The above
parametrisation turns out to be convenient in connection with the classification
of projective minimal surfaces.

Definition 1 A surface X in RP? is said to be projective minimal if it is
critical for the area functional [[ pgqdzdy.
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Theorem 1 ([13]) A4 surface X in RP® is projective minimal if and only if

ay _ B
p q

=0.

A projective minimal surface is said to be

(a) generic if a # 0 and 8 # 0.

(b) of Godeaux-Rozet type if « 20, 8=0o0r a =0, 8 # 0.

(c) of Demoulin type if « = 5 = 0. If, in addition, p = ¢, then X is said to be
of Tzitzéica type.

We note that, using a gauge transformation of the form (4), (5), we may
normalise o and 3 to be one of —1, 1 or 0.

2.2 Geometric classification of projective minimal surfaces

The above algebraic classification admits a corresponding geometric interpre-
tation which involves Lie quadrics and their envelopes.

Definition 2 Let [r] : R? — RP? be a parametrisation of a surface ¥ in
terms of asymptotic coordinates. Let p = r(z,y) be a point on X and let p,
be two additional points on the z-asymptotic line passing through p, given by
py =r(ztey). Let Iy and [ be the three lines tangent to the y-asymptotic
lines at p, and p respectively. These uniquely define a quadric @), containing
them as rectilinear generators. The Lie quadric at (z,y) is then the unique
quadric defined by

Qr,y) = lim Qc(z,y).

Remark 1 It turns out that the above definition of a Lie quadric is symmetric
i x and y, that is, interchanging x-asymptotic lines and y-asymptotic lines
leads to the same Lie quadric Q.

An explicit representation of the Lie quadric @ (at a point) is given below
[3,4]. For brevity, in the following, we do not distinguish between a Lie quadric
in RP3? and its representation in the space of homogeneous coordinates R*.

Theorem 2 The Lie quadric QQ admits the parametrisation
Q =n+ purt +vr? + pr,

where j and v parametrise the two families of generators of Q and {r,t* % n}
is the Wilczynski frame given by

q D
v=r, tt=r,—Zr tP=r,—Zr
2q ‘

p q bya pbq
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We note that the lines (r, t') and (r, t?) are tangent to X. The line (r, n) is
transversal to X' and plays the role of a projective normal. It is known as the
first directrix of Wilczynski.

Definition 3 A surface {2 parametrised by [w] : R? — RP? is an envelope of
the two parameter family of Lie quadrics {Q(z,y)} associated with a surface
Y if w(z,y) € Q(x,y) such that 2 touches Q(z,y) at w(x,y).

We note that, in particular, X' is itself an envelope of {@Q}. Generically, there
exist four additional envelopes as stated below [3].

Theorem 3 Ifa, 8 > 0 then the Lie quadrics {Q} possess four real additional
envelopes

wip =n4 et 4+ o0 + or

wy_ =n4 ' — o — por

woy =n— et +or? — por

wo_ =n—rt — 1?4 or,
where
. a N B
= _— V= .
" 2p2’ 2¢>

These are distinct if a, 8 # 0.

Remark 2 The above envelopes are called the Demoulin transforms of 2. We
denote them by Xy, Y X | and X¥__.

As indicated in the above theorem, the expressions for ji and ¥ imply that
whether a and 8 vanish or not is related to the distinct number of envelopes.
The geometric interpretation of the algebraic classification (a)-(c) is then that
a projective minimal surface X is

(a) generic if the set of Lie quadrics {@} has four distinct additional envelopes.

(b) of Godeaux-Rozet type if {Q} has exactly two distinct additional en-
velopes.

(c) of Demoulin type if {@Q} has exactly one additional envelope.

Remark 3 Theorem 3 implies that a surface X in RP? is necessarily projec-
tive minimal if there exist less than four additional distinct envelopes. Specifi-
cally, if the Lie quadrics of X have only two additional distinct envelopes then
2 is of Godeaux-Rozet type. If the Lie quadrics of X have only one additional
envelope then X' is of Demoulin type.

Remark 4 For any fized (x,y), the points wii(x,y), wi—(2,y),w—_(z,y)
and w_4 (z,y) of the Demoulin transforms of X may be regarded as the vertices
of a quadrilateral

[OJ++(£E, y)7 W+_(,ZE, y)7 w__(x,y),w_+(x,y)]
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which is known as the Demoulin quadrilateral. Then, the parametrisation of the
envelopes in Theorem 3 shows that the extended edges [wii(x,y), wi_(z,y)],
[W+_(JC, y)7 w__(z, y)L [w—— (I‘, y)a w_+(x, y)] and [W—+(xa y)a W+ (‘T, y)] are
generators of the Lie quadric Q(x,y). This induces a natural pairing between
the Demoulin transforms corresponding to the diagonal of the Demoulin quadri-
lateral. We thus call X1 and X__ opposite transforms and, similarly, X4 _
and X _4 are opposite transforms.

Fig. 1: The Demoulin quadrilateral

It turns out that the Demoulin transformation acts within the class of
projective minimal surfaces and within the classes (a)-(c) [10,8].

Theorem 4 Let X be a projective minimal surface. Then, each of its De-
moulin transforms is projective minimal. Moreover, the number n € {1,2,4}
of distinct Demoulin transforms of X is preserved by the Demoulin transfor-
mation. In particular, if X is of Godeauz-Rozet type then each of its Demoulin
transforms is of Godeaux-Rozet type. If X is of Demoulin type then its trans-
form is of Demoulin type.

2.3 Iteration of the Demoulin transformation

Let X be a generic projective minimal surface. Then, it has four distinct De-
moulin transforms which we call first generation Demoulin transforms. Each
of these transforms again has four Demoulin transforms which we call second
generation transforms. We arrange X' and the four first generation transforms
in a star of a Z? lattice with coordinates (n1, nz) in such a way that opposite
transforms are placed at vertices which correspond to an increment or decre-
ment of the same coordinate, and X' is placed at the centre of the star. We
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denote an increment of n by a subscript & and a decrement by a subscript k&
as in Figure 2.

&

Fig. 2: First generation Demoulin transforms

The following theorem expresses the remarkable known fact that only nine
of the sixteen second generation transforms of a generic projective minimal
surface X' are distinct, one of which is X' [10,12].

Theorem 5 Let X' be a generic projective minimal surface and Xg its De-
moulin transforms with 0 = 1, 1, 2, 2. Then,

(i) X is a Demoulin transform of each Xy,
(ii) Xy and Xy, 0 # X\, have a common transform different from X if and
only if they are not opposite transforms.

The above theorem implies that X1 and Y5 have a common transform which we
denote by Y1o. Similarly, we have Xi,, Xi5 and X5 as displayed in Figure 3.
The remaining Demoulin transform of X is denoted by X1 and, similarly, we
define X737, Yoo and Ys5. These are then the eight distinct second generation
transforms different from X' as stated above.
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2

Fig. 3: The combinatorics of first and second generation Demoulin transforms

Even though Figure 3 is merely a combinatorial re-arrangement of the
known relations between a generic projective minimal surface and its first and
second generation Demoulin transforms, it gives rise to the novel observation
that iterative application of the Demoulin transformation leads to an infinite
number of projective minimal surfaces which may be combinatorially attached
to the vertices of a Z? lattice.

Theorem 6 The set of all (iterated) Demoulin transforms of a generic pro-
jective minimal surface X forms a Z? lattice of projective minimal surfaces.

Proof Consider the second generation transforms X9 and Xoo. Then, by Theo-
rem 9, there exists a common Demoulin transform X, of X2 and Yoy, More-
over, Theorem 5 also implies that this surface is distinct from Yo and thus
distinct from its opposite transform with respect to X1o. Thus, there exist only
two possibilities for X, namely X1 and its opposite transform. If X, were Xy
then Xs5 would be a common transform of X1 and X5 and, hence, Y15 would
coincide with Yoo which would be a contradiction since these are distinct sur-
faces. Hence, X, is the opposite transform which we denote by X129. Similarly,
the common Demoulin transform between Xiq and Yo can be seen to be the
opposite transform to Xyo5. We denote the remaining transform of Yoo by
Yoo9. Continuing in this manner, we can generate a Z> lattice of Demoulin
transforms of X', part of which is shown in Figure 4.
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.2122 -222 .2122

12

11

-Zg -E 3 .Elli

Fig. 4: Part of the Z? Demoulin lattice

%55

We will now examine in detail the combinatorial and geometric implications
of Theorem 6.

3 The Demoulin lattice

We denote the set of projective minimal surfaces in RP® by M and the corre-
sponding lattice in Theorem 6 by

7% - M,

where X(0,0) is the seed surface and X' (nj, ng) is a Demoulin transform of
generation |ny |4 |ng|. If 2(0,0) is represented by [r] : R — RP® then iterative
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application of the Demoulin transformation generates a map of the form
r:R* x Z? —» R?, (6)

where, for a fixed (n1, nz) € Z2, r describes a projective minimal surface
and, for a fixed (z,y), r describes a Z? lattice of points on projective minimal
surfaces related by Demoulin transformations. We will sometimes suppress x
and y or n1 and ne when the context is clear in order to think of r as a map
r: 7% — R*or r: R?2 — R*. For a fixed (w,y), each lattice point is the point
of contact of a Lie quadric and the corresponding surface. Thus, we can define
a two-parameter family of lattices of Lie quadrics

Q : R? x Z* — {quadrics in RP3}. (7)

It turns out that, for a fixed (z,y), the two sublattices corresponding to even
and odd generation transforms of X' have distinctive geometric properties.

3.1 Asymptotic sublattices and associated Lie quadrics

Theorem 7 ([10]) Let X' be a generic projective minimal surface. Then, the
line connecting a point on X and the corresponding point on any one of its
coincidental second generation Demoulin transforms (i.e., Y12, X9, X5 and
Xi3) is tangent to both surfaces.

Remark 5 We note that by varying the x and y parameters on X, for each
coincidental second generation Demoulin transform Xy, we obtain a two-
parameter family of lines connecting X and Xgy. Hence, these families of lines
form W-congruences [10].

As a result of Theorem 7, for a fixed (x,y), it is then natural to distinguish
between the even and odd sublattices of = : Z? — R*. Moreover, due to the
existence of the W-congruences, each of these sublattices contains planar stars
(regarded as objects in RIP’3). 7?2 lattices whose stars are planar are termed
discrete asymptotic nets. These are known [2] to be canonical discrete versions
of surfaces parametrised in terms of asymptotic coordinates. Accordingly, the
following theorem holds.

Theorem 8 The lattice of Demoulin transforms of a projective minimal sur-
face X, evaluated at a point (x,y), decomposes into two discrete asymptotic
nets corresponding to even and odd generation Demoulin transforms.
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Fig. 5: A pair of discrete asymptotic nets (long and short dashes) obtained by restricting a
Demoulin lattice of surfaces to a fixed point (z,y)

In particular, since the vertices r1, 72, 77 and r35 of one sublattice are the ver-
tices of the Demoulin quadrilateral associated with the Lie quadric () combina-
torially attached to the vertex r of the other sublattice, each sublattice is com-
posed of Demoulin quadrilaterals. This raises the question as to the geomet-
ric nature of the relation between neighbouring quadrilaterals. A non-planar
quadrilateral admits a one-parameter family of quadrics passing through the
edges. Moreover, it is known [6] that, given a fixed member @ of this family,
there exists exactly one quadric in a neighbouring family of quadrics whose
tangent planes along the common edge coincide with those of Q. We call this
relation between neighbouring quadrics the C! property. Given two quadrics
Qp and Q, as in Figure 6, which satisfy the C' condition with respect to a
quadric @, there exist two ways of generating the quadric (). arising from the
C! condition with respect to @, and with respect to Q4. Remarkably, the two
quadrics generated in this way coincide [6]. Thus, for any fixed quadric @ in
the one-parameter family of quadrics passing through a quadrilateral of a dis-
crete asymptotic net, the C! condition uniquely determines quadrics passing
through all remaining quadrilaterals. This leads to the following definition.
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Fig. 6: Quadrics on an asymptotic sublattice

Definition 4 A set of quadrics {Q} associated with the quadrilaterals of a
discrete asymptotic net is termed a set of lattice Lie quadrics if the C! condition
holds for all neighbouring pairs of quadrics.

A justification for this terminology is as follows. Let 7: Z2 — R* be a discrete
asymptotic net and {@Q} a set of associated lattice Lie quadrics. Let Q be
the unique quadric passing through the lines (r73), (r17r12) and (711 7112)
(cf. Figure 7). We note that in the limit in the ny direction, the lines (rr3),
(r17r12) and (r117r112) become tangent lines to the coordinate curves of a
semi-discrete asymptotic net. Hence, by Definition 2, in the continuum limit,
@ becomes a Lie quadric. Let p° be a point on the line (rr3). Then, there
exists a unique generator of Q through p® which intersects the line (11 r112)
at a point p'. p' can be thought of as the intersection of the plane spanned
by p°, r1 and 715 and the line (711 7112). On the other hand, let Q and @Q; be
neighbouring lattice Lie quadrics, as in Figure 7. Then, there exists a unique
generator of @ through p° which intersects the line (r17r13) at a point p3.
Similarly, there exists a unique generator of @; through p® which intersects
the line (r117112) at a point p?. p? can be thought of as the intersection of
the tangent plane to Q at p3 and the line (711 7112). Then, as a result of the
C! condition, p°, p?, 71 and r1» are coplanar. Hence, p' = p?. Therefore, it is
evident that in the continuum limit the generators (p® p!), (p° p*) and (p3 p?)
coincide. Hence, in the continuum limit, the quadrics Q, Q1 and @ coincide.
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Thus, the lattice Lie quadrics of the discrete asymptotic net formally converge
to the Lie quadrics of the limiting continuous surface.

Fig. 7: A 3 x 2 patch of a discrete asymptotic net

Remarkably, the (surface) Lie quadrics attached to the vertices of one sub-
lattice of the Demoulin lattice turn out to form a set of lattice Lie quadrics of
the other sublattice. In order to show this, we need the following theorem.

P Pea c
Qd Qc
qq q
G 1
N i
v Q \
Puq ||| Do '|‘ Pyc
A 9
b——"T qp
Qa 9a Qb
P, Pap Dy

Fig. 8: A patch of a discrete asymptotic net with associated quadrics obeying the assumptions
of Theorem 9

Theorem 9 Let X be a 3x3 patch of a discrete asymptotic net containing four
adjacent quadrilaterals O,, Oy, O, and Oy as in Figure 8. Let Qq, Qp, Q. and
Qg be four quadrics in the one-parameter families of quadrics passing through
Oa, Op, O¢ and Og respectively. Given four points q,, q;, 9. and q4 on each
of these quadrics (which do not coincide with the vertices of the corresponding
quadrilaterals), if the edges of the quadrilateral 0= 4., 4, 4.,q,] touch the
respective quadrics at the points q,, qp, q. and q,, and there exists a quadric
Q passing through O which touches the planar star at the central vertex of X
then the quadrics Qq, Qp, Q. and Qg satisfy the C* condition.
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Proof We label the vertices of X by p,, Py, Pe> P> Pabs Poer Peds Pag @104 Dy aS
in Figure 8. We show that the C' condition holds between Q, and Q. The
other Ct conditions are treated similarly. We may write Qq (o, Va) as

Qa (Nom Va) =Dy + HaPap T VaPaeg + HaVaPg-

Then, since q, is a point on Qq, there exist (lq,vVa) and A, such that

Qa(,ulav Va) = >\aqa7

hence
Po = Aaly — MaPab ~ VaPad — HaVaPo-

Furthermore, the assumption that [q,, q,, 4., q4] touches Q,, which means that
the plane spanned by the edges (q, q,) and (g, q,;) and the tangent plane of
Q. at q, coincide, determines (g, Vq) in terms of p,, and p,q. We can derive
similar expressions for p,, p. and pg in terms of Ay, Ae and Ag respectively.
Here, and in the following, we suppress the details of the somewhat lengthy
calculations and merely focus on the idea of the proof. Coplanarity of P, Pup;
Py and py determines an expression for Ay in terms of A,. Similarly, we can
determine an expression for A, in terms of Ay and, hence, in terms of A,.
Finally, \g may also be expressed in terms of \,. However, the planarity of
the star with vertices p,, Py, Paq 0nd Py allows us to write A, in terms of Mg,
which determines A\, uniquely. Hence, we have established explicit expressions
for p,, Py, P, and pg in terms of Py, Pads Peq 1A Pp.- In order to verify the
Cl! condition between Q. and Qp, we now reparametrise the two quadrics Qg
and Qp according to

Qa ~ Pap + aPy + VaPy + ftaPaPaqg
Qb ~ Pap + [Py + VpPo + [1VEPpe

where fiq, = 1/ and Uy = vy. Any point X on the common edge between Q,
and Qp is then parametrised in two ways, namely

X Npab+170£p0 Npab+ﬂﬁp0

for suitable parameters v, and g which are evidently related by Uy = Ug. The
C! condition is then given by

0 0
Do, X7 ~ Qa7 ~ Qb :Oa
Ofie " Ofip
evaluated at v, = vg. This reduces to

|p07 Dabs Pq + Dapach Py + ﬂapbc| = 07

so that

|p07 DPaps Pad> pbl + |p07 Pap> Pa> pbcl =0,
by virtue of the co-planarity of the points Py, Pup> Pad> Poe and the points
Po> Pap> Pas Py- The above-mentioned expressions for p, and p, may now be
used to verify that this condition is identically satisfied.
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We now return to the even sublattice of the Demoulin lattice (Figure 5). Then,
associated with the quadrilateral [r, 713, 753, 713] is a quadric 3, which is the
Lie quadric corresponding to the surface Y5 at the point r3. In the same
manner, we may associate Lie quadrics @1, Q7 and ()2 with the quadrilat-
erals [r, 73,711, 712], [, 713, 711, T12] and [r, 71y, 722, 712] respectively of the
even sublattice. We can think of @3, @1, @2 and @7 as playing the role of
Qa, Qp, Q. and Q4 in Theorem 9. Similarly, we may also associate a Lie
quadric with each quadrilateral of the odd sublattice. In particular, we may
think of the quadric @) passing through the edges of the quadrilateral [ry, 72, 77,
r3] of the odd sublattice as being the quadric Q in Theorem 9. Q touches
the planar star of the even sublattice at » and, moreover, as a result of the
W-congruence property, the quadrilateral [r1, 72, 71, 73] touches the quadrics
@1, Q2, Q1 and Q35 at the points r1, 2, r{ and r3 respectively. Thus, the even
sublattice and the quadrics associated with the quadrilaterals of this sublattice
satisfy the conditions of Theorem 9. Hence, the quadrics Q3, @1, Q2 and Q1
satisfy the C' condition. Similarly, the quadrics associated with the quadrilat-
erals of the odd sublattice satisfy the C' condition. Thus, we have come to the
following conclusion.

Theorem 10 Let X be the Demoulin lattice of a projective minimal surface
evaluated at a point (z,y). Then, the quadrics associated with the quadrilaterals
of the even (or odd) sublattice of X satisfy the C' condition and therefore
constitute a set of lattice Lie quadrics for the even (or odd) sublattice.

3.2 Discrete envelopes and discrete projective minimal surfaces

In order to proceed, it is now required to introduce the notion of discrete
envelopes of lattice Lie quadrics.

Definition 5 A discrete envelope of a set of lattice Lie quadrics {Q} is a Z2
lattice such that each star touches the corresponding lattice Lie quadric.

Remark 6 By construction, a discrete envelope constitutes a discrete asymp-
totic net since each star lies in the tangent plane of the corresponding lattice
Lie quadric at the point of contact. It is evident that the existence of a discrete
envelope represents a constraint on the original discrete asymptotic net.

As a result of Theorem 10, we can now think of the even and odd sublattices
of the Demoulin lattice, evaluated at a point (z,y), as discrete envelopes of
lattice Lie quadrics since the planar stars of one sublattice touch the lattice
Lie quadrics of the other sublattice. In the classical case, we say that a surface
X’ and one of its Demoulin transforms are in asymptotic correspondence if the
asymptotic coordinates on Y are mapped to the asymptotic coordinates on
the Demoulin transform. We use the following theorem relating a surface in
RP? and its Demoulin transforms to motivate discretisation [3,10].

Theorem 11 A surface X and at least one of its Demoulin transforms are
in asymptotic correspondence if and only if X is projective minimal or a Q-
surface.



The Demoulin transformation and discrete projective minimal surfaces 17

Remark 7 We call a surface which is in asymptotic correspondence with one
of its Demoulin transforms a PMQ-surface. Separating @Q-surfaces from pro-
jective minimal surfaces requires additional geometric and algebraic analysis
which is beyond the scope of this paper. We note, however, that at least one of
the envelopes of a Lie quadric of a Q-surface is itself a quadric [3].

In view of Remark 6, the following definition is natural.

Definition 6 A discrete PMQ-surface is a discrete asymptotic net
[r] : Z2 — RP3 which admits an associated discrete envelope.

Remark 8 By construction, discrete PM@Q-surfaces are discrete analogues of
projective minimal or Q-surfaces. Even though the above definition essentially
captures the definition of discrete projective minimal surfaces by factoring out
discrete analogues of Q-surfaces, as in the continuous case, differentiating dis-
crete Q-surfaces and discrete projective minimal surfaces requires further anal-
ysis. This is the subject of a separate publication.

We conclude the paper with the following key result.

Theorem 12 The even and odd sublattices of the Demoulin lattice of a pro-
jective minimal surface, evaluated at a point (x,y), constitute discrete PMQ-
surfaces.

References

1. Bobenko, A., Pinkall, U.: Discrete surfaces with constant negative Gaussian curvature
and the Hirota equation. J. Diff. Geom. 43, 527-611 (1996)

2. Bobenko, A.I., Suris, Y.B.: Discrete differential geometry, Graduate Studies in Mathe-
matics, vol. 98. American Mathematical Society, Providence, RI (2008)

3. Bol, G.: Projektive Differentialgeometrie. 2. Teil. Vandenhoeck & Ruprecht, Goéttingen
1954

4. %erap)ontov, E.V.: Integrable systems in projective differential geometry. Kyushu J.
Math. 54(1), 183-215 (2000)

5. Hirota, R.: Nonlinear partial difference equations. III. Discrete sine-Gordon equation.
J. Phys. Soc. Japan 43, 2079-2086 (1977)

6. Huhnen-Venedey, E., Rorig, T.: Discretization of asymptotic line parametrizations using
hyperboloid surface patches. Geom. Dedicata 168, 265-289 (2014)

7. Huhnen-Venedey, E., Schief, W.K.: On Weingarten transformations of hyperbolic nets.
Int. Math. Res. Notices 2015, 2021-2081 (2015)

8. Mayer, O.: Contribution 4 ’étude des surfaces minima projectives. Bull. Sc. Math pp.
146-168,188-200 (1932)

9. Rogers, C., Schief, W.K.: Backlund and Darboux transformations. Cambridge Texts in
Applied Mathematics. Cambridge University Press, Cambridge (2002)

10. Sasaki, T.: Line congruence and transformation of projective surfaces. Kyushu J. Math.
60(1), 101-243 (2006)

11. Sauer, R.: Parallelogrammgitter als Modelle pseudosphérischer Flachen. Math. Z. 52,
611-622 (1950)

12. Su, B.: On Demoulin transforms of projective minimal surfaces. I. Sci. Sinica 6, 941-965
1957

13. ’(I‘hom)sen, G.: Uber eine liniengeometrische Behandlungsweise der projektiven
Flachentheorie und die projektive Geometrie der Systeme von Fléchen zweiter Ord-
nung. Abh. Math. Sem. Univ. Hamburg 4(1), 232-266 (1925)

14. Wunderlich, W.: Zur Differenzengeometrie der Flidchen Kkonstanter negativer
Kriimmung. Osterreich. Akad. Wiss. Math.-Nat. KI. S.-B. IT 160, 39-77 (1951)



	On the combinatorics of Demoulin transforms and (discrete) projective minimal surfaces
	McCarthy_Abstract
	McCarthy_Schief_Combinatorics

