A Longitudinal Examination of the Contribution of Perceived Motor Competence and Actual Motor Competence to Physical Activity in 6 to 9 Year Old Children

Fleur McIntyre
University of Notre Dame Australia

Follow this and additional works at: http://researchonline.nd.edu.au/theses
Part of the Medicine and Health Sciences Commons

WARNING
The material in this communication may be subject to copyright under the Act. Any further copying or communication of this material by you may be the subject of copyright protection under the Act.
Do not remove this notice.

Publication Details
McIntyre, F. (2009). A Longitudinal Examination of the Contribution of Perceived Motor Competence and Actual Motor Competence to Physical Activity in 6 to 9 Year Old Children (Doctor of Philosophy (PhD)). University of Notre Dame Australia.
http://researchonline.nd.edu.au/theses/41
A LONGITUDINAL EXAMINATION OF THE CONTRIBUTION OF PERCEIVED MOTOR COMPETENCE AND ACTUAL MOTOR COMPETENCE TO PHYSICAL ACTIVITY IN 6 TO 9 YEAR OLD CHILDREN

Submitted by

Fleur McIntyre

This thesis is submitted for the degree of Doctor of Philosophy of the University of Notre Dame Australia, School of Health Science.

2009
Declaration of Authorship

This thesis is the candidate’s own work and contains no material which has been accepted for the award of any degree or diploma in any other institution.

To the best of the candidate’s knowledge, the thesis contains no material previously published or written by another person, except where due reference is made in the text of the thesis.

_________________________ ___________________
Candidate’s Name Date
ABSTRACT

This study examined the relationship between perceived motor competence, actual motor competence and physical activity. In particular, it aimed to identify the impact of perceived motor competence (PMC), actual motor competence (AMC), and age and gender on the physical activity levels of young children. A number of factors have been identified as key contributors to children’s physical activity levels. However, there had been little investigation into their developing impact and subsequent relationship with emergent physical activity levels, particularly in the younger primary age groups.

Physical activity, AMC and PMC measures were collected from 6-, 7-, 8-, and 9-year-old boys and girls (N=201) on four occasions across 18 months. For physical activity, participants wore pedometers for 7 days and completed physical activity diaries to record daily step counts. Actual motor competence was assessed by videoing four motor skills (50m run, overhand throw, standing broad jump, and line walk), and creating a score based on mastery of skill criteria. Perceived motor competence was measured through the Self Description Questionnaire-I (Marsh, 1988). Participants answered closed questions in the form of scaled responses based on a scoring system of 1 (No, always) to 5 (Yes, always) with a total possible score of 120.

Independent t-tests detected significant gender differences in physical activity with boys having higher mean daily step counts than girls at every age. Similarly, boys had significantly higher AMC scores than girls at every age. There were no significant differences between boys and girls for PMC scores. AMC and PMC were moderately correlated in older boys (7-, 8-, and 9-year-olds) and strongly correlated in older girls (9-year-olds), with the relationship evident at an earlier age in boys than girls.

Cross sectional multiple regression analysis investigated the contribution of PMC and AMC to physical activity levels at each age, and in this sample of young children AMC made a greater contribution (9% – 30%) to physical activity than PMC (0% -
5%). Again, this significant input was evident at an earlier age in boys (7 years) than girls (9 years). Longitudinal analysis examined the influences on physical activity over time. Using linear mixed model analysis across the four data collection cycles (DC) identified Actual Motor Competence level, Gender and School significantly impacting physical activity levels over time in these young children.

This study provides evidence of the emerging relationship between perceived and actual motor competence and their differing impact on physical activity levels in young primary school children. Previous research has predominantly focused on children older than 9 years and identified that independently, perceived and actual motor competence both influence physical activity levels. The current results for children younger than 9 years suggest that AMC is more important to physical activity than PMC. Another major finding is that the pattern of development is different between boys and girls, with boys being more advanced in actual motor competency and its subsequent contribution to physical activity. These results have important implications for early childhood learning environments and the need to acknowledge these developmental distinctions.
ACKNOWLEDGEMENTS

I wish to acknowledge the contributions of the following people. It is a pleasure to thank all those who made this thesis possible.

I will forever be grateful to my supervisors Associate Professor Beth Hands and Professor Helen Parker, who have been such a valuable presence in my life over so many years. Thank you both for your assistance and contribution to the development of this thesis, and for your constant guidance, patience and encouragement.

To the staff (both past and present) within the Division of Health and Physical Education at the University of Notre Dame Australia, for always being available to listen, offer advice and support, and most importantly making me smile when I needed to most. Within this group of people, I would like to acknowledge Fiona Farringdon and Sophia Nimphius, who have been a continuous source of assistance in many aspects of this thesis, particularly during the final stages of the project.

Special appreciation goes to Paola Chivers, for all your help, time and patience, especially whilst completing your own PhD.

To the children, parents and schools, for their time, cooperation, and enthusiasm throughout this study.

To my family - my sister and brothers, Courtney, Jordan and Sheldon, despite our constant banter about when I would eventually submit, I am very thankful for your constant support throughout this entire thesis. To my Mum and Dad, for their love, encouragement and their endless confidence in me that I am able to achieve anything I want to.

Finally, to Clint, it is hard to find the words to truly express my gratitude for your friendship and encouragement to embark on this PhD and support (both financially and emotionally) across all these years to eventually reach the finish. In the end, I can only say thank you, and hope those words convey how truly appreciative I am.
TABLE OF CONTENTS

ABSTRACT ... i
ACKNOWLEDGEMENTS ... iii
LIST OF TABLES ... viii
LIST OF FIGURES ... ix
CHAPTER 1: THE PROBLEM ... 1
 Background and Context ... 1
 Purpose of the Study ... 5
 Significance of the Study ... 5
 Major Research Question ... 6
 Major Hypotheses .. 6
 Delimitations .. 7
 Limitations ... 7
 Definition of Terms ... 8
CHAPTER 2: LITERATURE REVIEW ... 10
 Developmental Theory ... 10
 Neural maturation perspective .. 11
 Information processing perspective ... 12
 Ecological psychology perspective ... 13
 Constraints model perspective ... 14
 Dynamic systems perspective .. 15
 Physical Activity in Children and Youth ... 17
 Gender differences in physical activity ... 19
 Determinants of Physical Activity ... 21
 Conceptual Framework .. 22
 Youth Physical Activity Promotion model (Welk, 1999) ... 22
 Developmental Mechanisms influencing Physical Activity
 Trajectories of Children (Stodden et al., 2008) ... 24
 Conceptual Framework for the Present Study ... 26
 Perceived Motor Competence ... 28
 Relationship between perceived motor competence and physical activity 30
 Actual Motor Competence .. 31
Relationship between actual motor competence and physical activity .. 32

Gender differences, Age trends and the Relationship between Actual Motor Competence and Perceived Motor Competence .. 35

Assessments of Physical Activity .. 38
 Direct observation .. 39
 Self report .. 40
 Proxy report .. 40
 Heart rate monitors ... 40
 Accelerometers ... 41
 Pedometers .. 42
 Doubly labelled water ... 42

Assessment of Perceived Motor Competence .. 43

Assessment of Actual Motor Competence .. 45

Conclusion ... 49

CHAPTER 3: METHODOLOGY .. 50
 Sample ... 51
 Measures ... 53
 Physical activity ... 53
 Perceived motor competence .. 54
 Actual motor competence ... 55
 Type of play choices ... 56
 Data Collection and Procedures .. 56
 Treatment of Data ... 58
 Data Analysis .. 59
 Likelihood Estimation, Covariance structure type and Comparing models using Information Criteria .. 62
 Ethical Clearance .. 63

CHAPTER 4: RESULTS ... 64
 Physical Activity, Perceived Motor Competence and Actual Motor Competence for Data Collection Cycles 1 to 4 ... 64
 Gender Differences for Physical Activity, Perceived Motor Competence and Actual Motor Competence .. 66
 Gender Comparisons for Type of Play and Activities .. 69
LIST OF TABLES

Table 1 Mean scores for Physical Activity, Actual Motor Competence and Perceived Motor Competence for all boys and girls across data collections cycles 65

Table 2 Play Choices in Competitive/organised sport, Informal Games and Sedentary Activities for Boys and Girls across age................................. 70

Table 3 Relationship between Perceived and Actual Motor Competence for Boys and Girls... 71

Table 4 Percentage of girls and boys in lowest or highest tertile for both Actual Motor Competence and Physical Activity .. 72

Table 5 Percentage of girls and boys in lowest or highest tertile for both Perceived Motor Competence and Physical Activity .. 72

Table 6 The contribution of Perceived Motor Competence and Actual Motor Competence to Physical Activity for 6-, 7-, 8- and 9-year-old girls............ 74

Table 7 The contribution of Perceived Motor Competence and Actual Motor Competence to Physical Activity for 6-, 7-, 8- and 9-year-old boys 75

Table 8 Summary of linear mixed models investigated for Physical Activity and main effects of AMC, PMC, Gender, Age and School................................. 78

Table 9 Covariance Structure Analysis and Goodness of Fit for Physical Activity basic model .. 80

Table 10 Final Physical Activity Linear Mixed Model (Model 12): Estimates of Fixed Effects for parameters... 82
LIST OF FIGURES

Figure 1 Conceptual Framework for the current study ... 27
Figure 2 Male Sample Breakdown .. 52
Figure 3 Female Sample Breakdown ... 53
Figure 4 Gender differences across ages for Physical Activity mean step counts ... 67
Figure 5 Gender differences across ages for Perceived Motor Competence 68
Figure 6 Gender differences across ages for Actual Motor Competence 69
Figure 7 Final linear model diagnostics... 80
Figure 8 Final linear mixed model of physical activity over time with significant
effects of AMC, School and Gender ... 83
Figure 9 Conceptual model for 6-year-old boys and girls 105
Figure 10 Conceptual model for 7-year-old boys and girls 106
Figure 11 Conceptual model for 8-year-old boys and girls 106
Figure 12 Conceptual model for 9-year-old boys and girls 107