Tactile Thresholds are Preserved yet Cortical Sensory Function is Impaired in Chronic Non-Specific Low Back Pain Patients

Benedict M. Wand
University of Notre Dame Australia, benedict.wand@nd.edu.au

Flavia S. Di Pietro

Pamela George
University of Notre Dame Australia, pam.george@nd.edu.au

Neil E. O’Connell

Follow this and additional works at: https://researchonline.nd.edu.au/health_conference
Part of the Medicine and Health Sciences Commons

This conference paper was originally published as:
Title:
Tactile Thresholds are Preserved yet Cortical Sensory Function is Impaired in Chronic Non-Specific Low Back Pain Patients

Authors & affiliations:
Benedict M Wand1, Flavia S Di Pietro2, Pamela J George1, Neil E O’Connell3

1. School of Health Sciences, The University of Notre Dame, Fremantle, W Australia
2. Physiotherapy Department, Bunbury Hospital, Bunbury, WA Australia
3. Centre for Research in Rehabilitation, School of Health Sciences and Social Care, Brunel University, United Kingdom

Abstract:
Introduction
A substantial amount of evidence points to an alteration in brain structure and function patients with chronic non-specific low back pain (CNSLBP) [1-6]. One interpretation of these findings is that the observed brain changes may represent a disruption of the brain’s representations of the body part and the resultant body perception disturbance may underpin this clinical problem. The current study aimed to investigate sensory dysfunction in CNSLBP. Specifically we aimed to distinguish cortically mediated sensory dysfunction from peripheral dysfunction by comparing simple tactile thresholds with more complex cortically mediated sensory tests.

Methods
We investigated tactile thresholds (TTH), two-point discrimination (TPD) and graphaesthesia over the lumbar spine of 19 CLBP patients and 19 age and sex matched healthy controls as a way of investigating whether CLBP patients present with a perceptual disturbance of their lumbar spine. Differences in performance of the sensory tests was explored using the Mann Whitney U Test and one-way between groups multivariate analysis of variance.

Results
We found no difference in tactile threshold between the two groups (P=.0.751). There was a statistically significant difference between controls and LBP for TPD: \(F(1,36)=10.15, p=.003 \) and letter error rate: \(F(1, 36)=6.54, p=0.015 \). The data indicate that LBP patients had a larger lumbar TPD distance and a greater letter recognition error rate.

Discussion
Both TPD and graphaesthesia are dependant on the integrity of the primary sensory cortex [7]. These data support existing findings of perceptual abnormality in chronic back pain [8] and the preservation of tactile thresholds is suggestive of cortical rather than peripheral sensory dysfunction. Amelioration of these abnormalities may present a target for therapeutic intervention.

Keywords
Chronic low back pain; corte; graphaesthesia; two-point discrimination

References
Chialvo D. Chronic pain patients are impaired on an emotional decision-making task. Pain. 2004b;108:129-136

