Article Title

Geomorphic evidence of major sea-level fluctuations during marine isotope substage-5e, Cape Cuvier, Western Australia

UNDA Affiliation

no

Abstract

A detailed geomorphologic and morphostratigraphic investigation of raised marine terraces at Cape Cuvier, Western Australia, reveals two morphologically distinct units. A lower, well-developed accretional reef terrace between 3 and 5.5 m above MLWS (mean low-water springs; hereafter denoted as “+”) represents an extended interval of stable sea level. An upper erosional terrace and incipient coralgal rim between + 8.5 to 10.5 m represents a brief sea-level stillstand at this higher elevation. These features suggest the lower and upper terraces developed during discrete sea-level events. In an attempt to better define the timing of emplacement of each marine unit, 20 coral samples collected along vertical and lateral reef growth axis from both terraces were analysed with U-series dating. Unfortunately, all coral samples exhibited elevated δ234Uinitial values, suggesting that pervasive uptake of 234U-enriched uranium and 230Th thorium had occurred. Despite the shortcomings of absolute dating, a succession of events can be resolved though morphostratigraphic relationships. Comparison of the facies relationships, coral growth, and morphostratigraphic features between the lower and upper terraces indicates that an early to mid MIS 5e stillstand at + 3 to 5 m was followed by a late rise to + 8.5 to 10.5 m. This agrees with an emerging global view of MIS 5e sea-level history derived from stable carbonate platforms, rejecting the hypothesis that these higher sea-level benchmarks are an artefact of localized tectonic processes.

Keywords

Peer-reviewed

Comments

Due to copyright restrictions the publisher's version/PDF of this article is unavailable for download.

This article may be accessed from the publisher here

Geomorphologymay be accessed from the National Library of Australia here

The Author:

Dr Michael O'Leary

 

Link to Publisher Version (DOI)

http://doi.org/10.1016/j.geomorph.2008.06.004