Title

AP-1 inhibitory peptides are neuroprotective following acute glutamate excitotoxicity in primary cortical neuronal cultures

Document Type

Article

Publication Date

2010

Abstract

Neuronal cell death caused by glutamate excitotoxicity is prevalent in various neurological disorders and has been associated with the transcriptional activation of activator protein-1 (AP-1). In this study, we tested 19 recently isolated AP-1 inhibitory peptides, fused to the cell penetrating peptide TAT, for their efficacy in preventing cell death in cortical neuronal cultures following glutamate excitotoxicity. Five peptides (PYC19D-TAT, PYC35D-TAT, PYC36D-TAT, PYC38D-TAT, PYC41D-TAT) displayed neuroprotective activity in concentration responses in both l- and retro-inverso d-isoforms with increasing levels of neuroprotection peaking at 83%. Interestingly, the D-TAT peptide displayed a neuroprotective effect increasing neuronal survival to 25%. Using an AP-1 luciferase reporter assay, we confirmed that the AP-1 inhibitory peptides reduce AP-1 transcriptional activation, and that c-Jun and c-Fos mRNA following glutamate exposure is reduced. In addition, following glutamate exposure the AP-1 inhibitory peptides decreased calpain-mediated α-fodrin cleavage, but not neuronal calcium influx. Finally, as neuronal death following glutamate excitotoxicity was transcriptionally independent (actinomycin D insensitive), our data indicate that activation of AP-1 proteins can induce cell death via non-transcriptional pathways. Thus, these peptides have potential application as therapeutics directly or for the rational design of small molecule inhibitors in both apoptotic and necrotic neuronal death associated with AP-1 activation.

Comments

Due to copyright restrictions the publisher's version/PDF of this article is unavailable for download.

Staff and Students of the University of Notre Dame Australia may access the full text of this article here

This article may be accessed from the publisher here

The Journal of Neurochemistry may be accessed from the National Library of Australia here