Associations between anxious-depressed symptoms and cardiovascular risk factors in a longitudinal childhood study

Sandra Louise
University of Western Australia, slouise@meddent.uwa.edu.au

Nicole Warrington
University of Western Australia, nicole.warrington@uwa.edu.au

Pamela McCuskie
University of Western Australia, pamela.mccuskie@qmail.com

Wendy Oddy
University of Western Australia, wendyo@ichr.uwa.edu.au

Stephen Zubrick
University of Western Australia, steve@ichr.uwa.edu.au

See next page for additional authors

Follow this and additional works at: https://researchonline.nd.edu.au/health_article

Part of the Life Sciences Commons, and the Medicine and Health Sciences Commons

This article was originally published as:

This article is posted on ResearchOnline@ND at https://researchonline.nd.edu.au/health_article/65. For more information, please contact researchonline@nd.edu.au.
Associations between anxious-depressed symptoms and cardiovascular risk factors in a longitudinal childhood study

Sandra Louise a,k, Nicole M. Warrington b, Pamela A. McCaskie a, Wendy H. Oddy c, Stephen R. Zubrick c, Beth Hands d, Trevor A. Mori e, Laurent Briollais f, Sven Silburn c,g, Lyle J. Palmer a,f,h, Eugen Matte e, Lawrence J. Beilin e

a Centre for Genetic Epidemiology and Biostatistics, the University of Western Australia, Perth, Australia
b School of Women’s and Infants’ Health, The University of Western Australia, Perth, Australia
c School of Medicine and Pharmacology, Royal Perth Hospital Unit, The University of Western Australia, Perth, Australia
d Telethon Institute for Child Health Research, Centre for Child Health Research, The University of Western Australia, Perth, Australia
e University of Notre Dame, Fremantle, Australia
f Samuel Lunenfeld Research Institute, Mount Sinai Hospital, University of Toronto, Canada
g Developmental Health and Education Research, Menzies School of Health Research, Darwin, Australia
h Dalla Lana School of Public Health, University of Toronto and Cancer Care Ontario, Toronto, Canada

ARTICLE INFO

Available online xxxx

Keywords:
Lifestyle
Depression
Cardiovascular disease
Risk factors
Child

ABSTRACT

Objective. To examine the influence of anxious/depressed scores on cardiovascular risk factors throughout childhood.

Methods. Data from the Western Australian Pregnancy Cohort (Raine) Study, a study of 2900 pregnancies recruited between 1989 and 1991, were used. Anxious-depressed scores (derived from the Childhood Behavior Checklist), body mass index (BMI) and blood pressure were measured at 5 (n=1681), 8 (n=1697), 10 (n=1575) and 14 (n=1386) years. At age 14 depressive symptom scores (Beck Depression Inventory for Youth), anxious-depressed scores (Youth Self-Report (YSR) and Teacher Report Form (TRF)) and fasting lipid, glucose and insulin were also available. Cross sectional and longitudinal analyses were conducted.

Results. At age 14, girls with higher anxious-depressed scores had higher BMI (p≤0.005) and homeostasis model assessment-estimated insulin resistance (p≤0.0001). This equated to a difference of 0.6 kg/m² and 0.3 units in predicted BMI and HOMA-IR respectively (top 5% vs. score of zero). Boys with higher anxious-depressed scores had lower systolic blood pressure trajectories (p=0.024).

Conclusion. Depressive scores appear to have differing influences on BMI, homeostasis model assessment-estimated insulin resistance and systolic blood pressure in boys and girls. Paradoxically boys with higher anxious-depressed scores had lower blood pressure throughout childhood.

© 2012 Elsevier Inc. All rights reserved.

Introduction

Depressive symptoms have been consistently and independently associated with cardiovascular disease (CVD) risk and mortality (Hemmingway and Marmot, 1999; Nicholson et al., 2006; Rugulies, 2002; Wulsin and Singal, 2003), CVD risk factors (Adams et al., 2005; Chen and Wang, 2008; Klumbiene et al., 2000; Porkka et al., 1994; Webber et al., 1991; Zimmet et al., 1992) and depressive symptoms (Costello et al., 2006; Pine et al., 1998) both show origins in childhood and track from adolescence to adulthood. Given the complex and multidirectional nature of the relationship between depression and CVD in adults, examining the influences of depressive symptoms on CVD risk factors in childhood may shed some light on the nature of this association.

Consistent with adult studies, children with more depressive symptoms are at increased risk of being obese (Cortese et al., 2009; Goodman and Whitaker, 2002; Hillman et al., 2010; Mustillo et al., 2003; Richardson et al., 2006). Few childhood studies, however, have examined the influence of depressive symptoms on CVD risk factors other than obesity. One cross-sectional study reported an inverse association between negative affect and blood pressure in boys (Ewart and Kolodner, 1994) and another reported an association between depressive symptoms and insulin sensitivity (Shomaker et al., 2010). Therefore in addition to BMI, the aim of this study was to...
investigate the cross sectional and longitudinal childhood associations between depression scores and a range of cardiovascular and related metabolic risk factors.

Participants and methods

Study population

This study uses data from participants of the Western Australian Pregnancy Cohort (Raine) Study, a longitudinal pregnancy cohort of children whose mothers attended antenatal clinic at King Edward Memorial Hospital (KEMH) or nearby private practices in Western Australia between 1989 and 1991. More specific details of recruitment have been published elsewhere (Newnham et al., 1993). The original cohort consisted of 2900 pregnant women, recruited at approximately 18 weeks of gestation. Depression related measures and certain CVD risk factors were assessed at 5, 8, 10 and 14 years.

At each survey self reported questionnaires were completed by the child’s primary carer (usually their mother (~85%)) and also by the child at age 14. At 10 and 14 years the child’s school teacher also completed a questionnaire relating to the child’s performance and behavior at school. Anthropometry and blood pressure measurements were obtained at each assessment visit, and at age 14 blood samples were taken for fasting lipids, glucose and insulin.

Participants were excluded from this study if they were part of a multiple pregnancy, had a major congenital malformation, or had a related sibling in the study. Parents of participants gave informed consent at each survey as did the children at age 14. The study was approved by Human Ethics Committees at King Edward Memorial Hospital and Princess Margaret Hospital in Perth.

Anxious/depressed mood

Anxious-depressed scores were available from the Child Behavior Checklist (CBCL/4-18) at all surveys (Achenbach, 1991a), from the Youth Self Report (YSR/11-18) at 14 years and from the Teacher Report Forms (TRF/6-18) at 10 and 14 years (Achenbach, 1991b).

The anxious-depressed subscales within both the CBCL/4-18 and YSR/11-18 consisted of 13 items relating to anxious and/or depressive mood including whether the child cries a lot, is nervous, too fearful or anxious. Scores could range from zero to 26. The TRF/6-18 subscale consisted of 16 items and scores could range from zero to 60. Higher scores represented greater anxious-depressed mood (Achenbach, 1991a).

Depressive symptoms were measured using the Beck Depression Inventory for Youth (BDI-Y) in the 14 year survey (Beck et al., 2001). The BDI-Y contains 20 items relating solely to depressed symptoms that an adolescent may have felt in the last 2 weeks. Scores could range from zero to 60.

Both measures have excellent test–retest reliability (BDI-Y: girls: r = 0.87; boys: r = 0.89) (Beck et al., 2001) and high sensitivity (CBCL/4-18: 66% anxious-depressed) and specificity (CBCL/4-18: 80% anxious-depressed) (Zubrick et al., 1997). Consistent with previous studies (Costello et al., 2006; Sawyer et al., 2001), at each survey less than 5% of the cohort were anxious-depressed as defined by Achenbach (1991a). Therefore our focus was on how changes in anxious-depressed scores over time affected the rate of change (longitudinal) or mean measures (cross sectional) of CVD risk factors within the cohort (Pine et al., 1997). For consistency we analysed the BDI-Y similarly (8.4% were mildly, moderately or severely depressed according to the clinical thresholds defined by Beck et al. (2001)).

CVD risk factors

Weight, height and blood pressure were assessed by trained assessors (Huang et al., 2007, 2009). Weight was recorded to the nearest 0.1 cm, was measured using a Holtain Stadiometer. Body mass index (BMI) was then calculated. Seated blood pressure was measured after a 5 minute rest using a Dinamap electronic recorder (Dinamap XL or Dinamap ProCare 100), with the appropriate sized cuff placed on the right arm. With the exception of blood pressure measured at year 8 when only two readings were obtained, the second and third readings recorded at 2 minute intervals were averaged for each child (Schulze et al., 2000).

Fasting triglycerides, high-density lipoprotein cholesterol (HDL-C) total cholesterol, insulin and glucose were measured in most children attending (n = 1297) at 14 years (Huang et al., 2009). Triglycerides and total cholesterol were determined enzymatically on a Cobas MIRA analyzer (Roche Diagnostics) and HDL-C was determined on a heparin–manganese supernatant (Huang et al., 2009). Glucose and insulin were measured by an automated Technicon Axon analyzer (Bayer Diagnostics, Australia) and an automated radioimmunoassay (Tosoh, Japan) respectively. HOMA-IR and low density lipoprotein cholesterol (LDL-C) were then calculated using the formula fasting insulin (µU/mL) × fasting glucose (mmol/L)/22.5 (Matthews et al., 1985) and the Friedewald formula (Friedewald et al., 1972) respectively.

Statistical analysis

Three sets of analyses were conducted.

1. Cross sectional analyses between anxious/depressed scores and BMI and blood pressure at 5, 8, 10 and 14 years.
2. Cross sectional analyses between anxious/depressed scores and fasting lipids and HOMA-IR at 14 years.
3. Longitudinal analyses between anxious-depressed scores over time on BMI and blood pressure trajectories.

Cross-sectional analyses

For skewed data log transformations were applied prior to analysis; for diastolic blood pressure in boys at 8 years and girls at 5 years, systolic blood pressure at 14 years in boys, triglycerides and HOMA-IR in both boys and girls at age 14, HDL-C, LDL-C and total cholesterol in girls at age 14. Multivariate skew-normal linear regression (Azzalini and Capitanio, 1999) was used to account for the longer right tail of BMI distribution, present at all surveys even after log transformations.

If an association was detected, multivariate linear regression analyses were performed with adjustment for the following potential confounders: age, age², age of first menstruation as an indicator of puberty (available for females only), socio economic status (Goodman, 1999) as indicated by family income measured at 5, 8, 10 and 14 years, BMI (where appropriate), diet (assessed 14 years only using the food frequency questionnaire (Oddy et al., 2009), the higher the score the better the diet), smoking in the last 12 months, vigorous exercise frequency and duration outside of school.

Longitudinal analyses

Trajectories were constructed to examine the influence of longitudinal measures of anxious-depressive scores (derived from the CBCL/4-18) on the CVD risk factors of BMI, systolic and diastolic blood pressure.

Diastolic and systolic blood pressure trajectories were constructed using linear mixed effect (LME) models (Laird and Ware, 1982) from 5 to 14 years. Due to the non-normality of BMI measurements across time, an extension of the LME model based on multivariate skew t distribution (Lachos et al., 2010) was used to construct BMI trajectories. As we are interested in changes in BMI overtime, we have opted to look at untransformed BMI measures as other transformation methods such as z scores have been shown to be optimal for assessing adiposity at a single occasion (Cole et al., 2005).

Please cite this article as: Louise, S., et al., Associations between anxious-depressed symptoms and cardiovascular risk factors in a longitudinal childhood study, Prev. Med. (2012), doi:10.1016/j.ypmed.2012.03.004
All trajectories included random effects for intercept (average systolic blood pressure, diastolic blood pressure or BMI) and slope (change in systolic blood pressure, diastolic blood pressure or BMI over time). If a longitudinal association was detected, adjustments were made for potential confounders (low income and BMI (blood pressure trajectories only)).

All analyses were stratified by sex due to significant sex and anxious-depressed score interactions for most CVD risk factors (p < 0.05). All continuous confounders were mean centered (to the nearest whole number) to remove potential co-linearity between the beta coefficients. Analyses were performed in the statistical package R version 2.6.1 (R Development Core Team, 2007). Only significant confounders were left in the final adjusted model. As this study was exploratory in nature, multiple testing was corrected for by dividing the initial significance level (5%) by the number of different endpoints tested (blood pressure, BMI, fasting lipids and HOMA-IR (i.e. n = 4)) (Bender and Lange, 2001).

Results

Of the original 2900 pregnancies, 2633 were eligible for analysis after excluding multiple pregnancies (n = 66), fetus or babies that did not survive birth (n = 91), newborns with congenital malformations (n = 29), babies with later complications (n = 2) and/or related siblings (n = 79). The number of children at the 5, 8, 10 and 14 year surveys with complete data was 1681, 1697, 1575 and 1386 respectively. The proportion of males and females remained consistent (~52% female) and 82% of parents reported that they were Caucasian.

Characteristics of children with complete data at 5 to 14 years are shown in Table 1. At 14 years boys exercised more and for longer, had better diet quality, higher systolic blood pressure, lower BMI, lower fasting lipid measurements and lower anxious-depressed and depressive symptom scores compared to girls. By age 14, 89.0% of girls had their menstrual period.

Children who participated at 14 years compared to those lost to follow-up after 5 years of age had higher systolic blood pressure (103.6 mm Hg vs. 102.3 mm Hg, p = 0.010) and were from higher income families (>$40 001 = 46.9% vs. 38.9%, p = 0.002); all other measures were comparable.

Cross sectional analyses

Boys at 14 years with higher depressive symptom scores had lower systolic blood pressure (p = 0.002). Boys for whom teachers reported more anxious-depressed symptoms had higher triglyceride measurements (p = 0.008) (Table 2). Only the association between systolic blood pressure and depressive symptoms was independent of potential confounders (Table 3). Using adjusted models the predicted mean difference between systolic blood pressure of boys with a depressive symptom score (BDI-Y ≥ 15) in the top 5% and those who had no symptoms was −3.0 mm Hg.
At 14 years girls with higher anxious-depressed and depressive symptom scores tended to have higher HOMA-IR and BMI (Table 2). Only the association between scores reported by child's teacher and BMI were independent of potential confounders (Table 3). Using adjusted models the predicted mean difference between the BMI and HOMA-IR of girls with an anxious-depressed score in the top 5% (TRF/6-18 ≥ 13 and YSR/11-18 ≥ 15 respectively) and those who had no symptoms were respectively 0.6 kg/m² and 0.3 units. No other associations were found (p>0.013) (see online Supplement Table A.1).

Longitudinal analyses

Boys with higher anxious-depressed scores over time had a lower rate of change for systolic blood pressure (Fig. 1). This persisted after adjusting for BMI (β = −0.037; 95% CI: −0.070, −0.005; p = 0.024). No other longitudinal associations were detected (see online Supplemental Table A.2).

Discussion

In this study anxious-depressed symptoms influenced cardiovascular risk factors differently in boys and girls. At 14 years, girls with higher anxious-depressed scores had higher adiposity and insulin resistance, possibly predicting the coincidental development of adult depression and cardiovascular disease. On the other hand boys with higher anxious depressed scores had lower systolic blood pressure trajectories throughout childhood.

Two other studies have also reported associations between depressive symptoms and adiposity only in girls (Chaton et al., 2009; Hillman et al., 2010). A possible mechanism underlying the gender differences between anxious-depressive scores and adiposity at age 14 may be sex-related differences in hormones such as leptin. Leptin is a key regulator of body weight (Kaplowitz et al., 2001), is thought to trigger puberty (Blum et al., 1997), has been linked to depressed mood (Lu, 2007) and has been shown to present at greater concentrations in young women compared to age-matched men (Castracane et al., 1998).

Shomaker et al. (2010) reported that depressive symptoms in adolescence were related to decreased insulin sensitivity, independent of adiposity, puberty and sex. In our study, however, this relationship was apparent only in girls. In contrast to the study used by Shomaker et al. (2010), our sample was larger, younger and had a lower proportion of obese children. Both studies were correlational in nature and as such the direction of causality remains unclear.

Our finding of an inverse association between anxious/depressed scores and systolic blood pressure in adolescent boys but not girls is consistent with a previous study (Ewart and Kolodner, 1994). Our longitudinal analyses suggest that this association is present as early as 5 years of age. At first sight the direction of this association appears contrary to studies in which adults with more depressive symptoms were at increased risk of hypertension (Davidson et al., 2000; Delaney et al., 2010). However a study by Licht et al. (2009) showed that adults who were depressed, excluding those taking anti depressant, had lower blood pressure while depression defined by antidepressant use increased the risk of hypertension. Alternatively this relationship may depend on adult behaviors and responses to environmental stress (Lett et al., 2004). It is also possible that the continuous measures of anxious-depressed mood used in this study have lower predictive value (Lustman and Clouse, 2007) for subsequent clinically diagnosed depression in adults which have been associated with cardiovascular events.

Elovainio et al. (2010) showed from 3 years of age, children with anxious-depressed scores had higher fasting triglycerides levels. This association appeared dependent on BMI and exercise. The finding of an inverse association between anxious/depressed and depressive symptoms as adults. In our study adolescent boys with higher anxious-depressed scores (teacher reported) had higher fasting triglyceride trajectories which were more likely to have more depressive symptoms as adults. In our study adolescent boys with higher anxious-depressed scores (teacher reported) had higher fasting triglyceride trajectories which were more likely to have more depressive symptoms as adults.
Values in bold represent significant SRS scores derived from the Youth Self Report CBCL, TRFx derived from Teacher Reported Form and BDI-Y scores are derived from the Beck Depression Inventory for Youth.

Effect size values above represent the amount of change in each specified outcome for a one-unit change in each listed predictor. Effect size values above represent the amount of change in each specified outcome for a one-unit change in each listed predictor. Only significant predictors left in final model. ≤$25,000 = baseline category for family income; ≥$40,001 = baseline category of family income; ≥10 and 11 respectively) (1989 to 2006).

Table 3
Multivariate associations between anxious/depressed scores and cardiovascular risk factors in the Western Australian Pregnancy Cohort (Raine) Study that survived multiple testing (2003 to 2006).

<table>
<thead>
<tr>
<th>Sex</th>
<th>Outcome</th>
<th>Predictor*</th>
<th>Effect size</th>
<th>95% CI</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boys</td>
<td>Systolic blood pressure (mm Hg) (n = 705)</td>
<td>Family income >$25,001 and ≤$40,000</td>
<td>2.826</td>
<td>(−0.027, 5.751)</td>
<td>0.048</td>
</tr>
<tr>
<td></td>
<td></td>
<td>≥$40,001</td>
<td>1.830</td>
<td>(−0.406, 4.109)</td>
<td>0.103</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BMI</td>
<td>0.766</td>
<td>(0.583, 0.948)</td>
<td><0.0001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TRF14</td>
<td>−0.200</td>
<td>(−0.339, −0.060)</td>
<td>0.004</td>
</tr>
<tr>
<td></td>
<td>Triglycerides (mmol/L) (n = 363)</td>
<td>Age</td>
<td>0.241</td>
<td>(0.023, 0.514)</td>
<td>0.035</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BMI</td>
<td>0.026</td>
<td>(0.017, 0.035)</td>
<td><0.0001</td>
</tr>
<tr>
<td></td>
<td>Exercise frequency outside of school hours</td>
<td>1–3 times a week</td>
<td>0.072</td>
<td>(−0.031, 0.189)</td>
<td>0.169</td>
</tr>
<tr>
<td></td>
<td></td>
<td>once a month or less</td>
<td>0.120</td>
<td>(−0.001, 0.258)</td>
<td>0.048</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TRF14</td>
<td>0.013</td>
<td>(−0.002, 0.028)</td>
<td>0.078</td>
</tr>
<tr>
<td>Girls</td>
<td>HOMA.IR (n = 508)</td>
<td>Year of first period</td>
<td>0.020</td>
<td>(0.006, 0.033)</td>
<td>0.001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BMI</td>
<td>0.017</td>
<td>(0.014, 0.021)</td>
<td><0.0001</td>
</tr>
<tr>
<td></td>
<td>Exercise frequency outside of school hours</td>
<td>1–3 times a week</td>
<td>0.061</td>
<td>(0.028, 0.096)</td>
<td>0.0001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>once a month or less</td>
<td>0.070</td>
<td>(0.020, 0.126)</td>
<td>0.004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BDI-Y</td>
<td>0.002</td>
<td>(0.001, 0.004)</td>
<td>0.007</td>
</tr>
<tr>
<td></td>
<td>HOMA.IR (n = 508)</td>
<td>Year of first period</td>
<td>0.124</td>
<td>(0.052, 0.198)</td>
<td>0.0005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BMI</td>
<td>0.104</td>
<td>(0.084, 0.124)</td>
<td><0.0001</td>
</tr>
<tr>
<td></td>
<td>Exercise frequency outside of school hours</td>
<td>1–3 times a week</td>
<td>0.373</td>
<td>(0.175, 0.587)</td>
<td>0.0001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>once a month or less</td>
<td>0.439</td>
<td>(0.141, 0.777)</td>
<td>0.002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>YSR</td>
<td>0.020</td>
<td>(0.004, 0.037)</td>
<td>0.014</td>
</tr>
<tr>
<td></td>
<td>BMI (kg/m²) (n = 638)</td>
<td>Year of first period</td>
<td>−0.754</td>
<td>(−0.944, −0.564)</td>
<td>0.0001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Family income >$25,001 and ≤$40,000</td>
<td>−0.519</td>
<td>(−1.322, 0.284)</td>
<td>0.206</td>
</tr>
<tr>
<td></td>
<td></td>
<td>≥$40,001</td>
<td>−0.714</td>
<td>(−1.382, −0.047)</td>
<td>0.036</td>
</tr>
<tr>
<td></td>
<td></td>
<td>YSR</td>
<td>0.030</td>
<td>(0.015, 0.075)</td>
<td>0.019</td>
</tr>
<tr>
<td></td>
<td>BMI (kg/m²) (n = 638)</td>
<td>Year of first period</td>
<td>−0.772</td>
<td>(−0.962, −0.583)</td>
<td>0.0001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Family income >$25,001 and ≤$40,000</td>
<td>−0.505</td>
<td>(−1.315, 0.305)</td>
<td>0.222</td>
</tr>
<tr>
<td></td>
<td></td>
<td>≥$40,001</td>
<td>−0.704</td>
<td>(−1.375, −0.034)</td>
<td>0.039</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BDI-Y</td>
<td>0.007</td>
<td>(0.020, 0.034)</td>
<td>0.059</td>
</tr>
<tr>
<td></td>
<td>BMI (kg/m²) (n = 396)</td>
<td>Year of first period</td>
<td>−0.763</td>
<td>(−0.974, −0.551)</td>
<td>0.0001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Family income >$25,001 and ≤$40,000</td>
<td>−0.415</td>
<td>(−1.387, 0.558)</td>
<td>0.403</td>
</tr>
<tr>
<td></td>
<td></td>
<td>≥$40,001</td>
<td>−0.886</td>
<td>(−1.691, −0.081)</td>
<td>0.031</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TRF14</td>
<td>0.105</td>
<td>(0.015, 0.195)</td>
<td>0.023</td>
</tr>
</tbody>
</table>

YSR scores derived from the Youth Self Report CBCL, TRFx derived from Teacher Reported Form and BDI-Y scores are derived from the Beck Depression Inventory for Youth. Values in bold represent significant associations.

Study limitations and strengths

Limitations of our study include attrition and the correlational nature of this study. Children who continued to participate in this study, however, were comparable to those who were lost to follow-up except in relation to family income and systolic blood pressure. A strength of our study was the use of detailed quantitative trait measurements that were measured consistently and collected serially. Unlike many previous studies, we were able to explore longitudinal associations and therefore explore the potential aetiological pathways underlying the association of anxious-depressed mood and CVD risk factors overtime.

In summary, anxious/depressed symptoms were associated with higher BMI and insulin resistance in girls and lower systolic blood pressure throughout childhood in boys. These effects are present prior to the development of unhealthy lifestyles that may contribute to the association between CVD and depression in adulthood.

Financial disclosure

The Raine Study Core management is funded by the Telethon Institute for Child Health Research, The University of Western Australia, the Women’s and Infant’s Research Foundation at King Edward Memorial Hospital and the Raine Medical Research Foundation at the University of Western Australia.

This work was supported by the National Health and Medical Research Council of Australia, Healthway Western Australia, the Raine Medical Research Foundation at the University of Western Australia, the Asthma Foundation of Western Australia, a Healthway West...
Appendix A. Supplementary data

Supplemental data to this article can be found online at doi:10.1016/j.ypmed.2012.03.004.

References

